Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Rep ; 14(1): 13069, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844820

RESUMEN

Insertion mutations in exon 20 of the epidermal growth factor receptor gene (EGFR exon20ins) are rare, heterogeneous alterations observed in non-small cell lung cancer (NSCLC). With a few exceptions, they are associated with primary resistance to established EGFR tyrosine kinase inhibitors (TKIs). As patients carrying EGFR exon20ins may be eligible for treatment with novel therapeutics-the bispecific antibody amivantamab, the TKI mobocertinib, or potential future innovations-they need to be identified reliably in clinical practice for which quality-based routine genetic testing is crucial. Spearheaded by the German Quality Assurance Initiative Pathology two international proficiency tests were run, assessing the performance of 104 participating institutes detecting EGFR exon20ins in tissue and/or plasma samples. EGFR exon20ins were most reliably identified using next-generation sequencing (NGS). Interestingly, success rates of institutes using commercially available mutation-/allele-specific quantitative (q)PCR were below 30% for tissue samples and 0% for plasma samples. Most of these mutation-/allele-specific (q)PCR assays are not designed to detect the whole spectrum of EGFR exon20ins mutations leading to false negative results. These data suggest that NGS is a suitable method to detect EGFR exon20ins in various types of patient samples and is superior to the detection spectrum of commercially available assays.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Exones , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Pulmonares , Humanos , Receptores ErbB/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Ensayos de Aptitud de Laboratorios , Anticuerpos Biespecíficos/uso terapéutico , Mutagénesis Insercional , Inhibidores de Proteínas Quinasas/uso terapéutico
2.
J Thorac Oncol ; 19(1): 160-165, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429463

RESUMEN

INTRODUCTION: MET fusions have been described only rarely in NSCLC. Thus, data on patient characteristics and treatment response are limited. We here report histopathologic data, patient demographics, and treatment outcome including response to MET tyrosine kinase inhibitor (TKI) therapy in MET fusion-positive NSCLC. METHODS: Patients with NSCLC and MET fusions were identified mostly by RNA sequencing within the routine molecular screening program of the national Network Genomic Medicine, Germany. RESULTS: We describe a cohort of nine patients harboring MET fusions. Among these nine patients, two patients had been reported earlier. The overall frequency was 0.29% (95% confidence interval: 0.15-0.55). The tumors were exclusively adenocarcinoma. The cohort was heterogeneous in terms of age, sex, or smoking status. We saw five different fusion partner genes (KIF5B, TRIM4, ST7, PRKAR2B, and CAPZA2) and several different breakpoints. Four patients were treated with a MET TKI leading to two partial responses, one stable disease, and one progressive disease. One patient had a BRAF V600E mutation as acquired resistance mechanism. CONCLUSIONS: MET fusions are very rare oncogenic driver events in NSCLC and predominantly seem in adenocarcinomas. They are heterogeneous in terms of fusion partners and breakpoints. Patients with MET fusion can benefit from MET TKI therapy.


Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Adenocarcinoma/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Resultado del Tratamiento
3.
Eur J Cancer ; 179: 124-135, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521334

RESUMEN

OBJECTIVES: Resistance to MET inhibition occurs inevitably in MET-dependent non-small cell lung cancer and the underlying mechanisms are insufficiently understood. We describe resistance mechanisms in patients with MET exon 14 skipping mutation (METΔex14), MET amplification, and MET fusion and report treatment outcomes after switching therapy from type I to type II MET inhibitors. MATERIALS AND METHODS: Pre- and post-treatment biopsies were analysed by NGS (next generation sequencing), digital droplet PCR (polymerase chain reaction), and FISH (fluorescense in situ hybridization). A patient-derived xenograft model was generated in one case. RESULTS: Of 26 patients with MET tyrosine kinase inhibitor treatment, eight had paired pre- and post-treatment biopsies (Three with MET amplification, three with METΔex14, two with MET fusions (KIF5B-MET and PRKAR2B-MET).) In six patients, mechanisms of resistance were detected, whereas in two cases, the cause of resistance remained unclear. We found off-target resistance mechanisms in four cases with KRAS mutations and HER2 amplifications appearing. Two patients exhibited second-site MET mutations (p.D1246N and p. Y1248H). Three patients received type I and type II MET tyrosine kinase inhibitors sequentially. In two cases, further progressive disease was seen hereafter. The patient with KIF5B-MET fusion received three different MET inhibitors and showed long-lasting stable disease and a repeated response after switching therapy, respectively. CONCLUSION: Resistance to MET inhibition is heterogeneous with on- and off-target mechanisms occurring regardless of the initial MET aberration. Switching therapy between different types of kinase inhibitors can lead to repeated responses in cases with second-site mutations. Controlled clinical trials in this setting with larger patient numbers are needed, as evidence to date is limited to preclinical data and case series.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Resistencia a Antineoplásicos/genética , Proteínas Proto-Oncogénicas c-met/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación
4.
Lung Cancer ; 144: 40-48, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32361034

RESUMEN

BACKGROUND: MAP2K1 mutations are rare in non-small cell lung cancer (NSCLC) and considered to be mutually exclusive from known driver mutations. Activation of the MEK1-cascade is considered pivotal in resistance to targeted therapy approaches, and MAP2K1 K57 N mutation could be linked to resistance in preclinical models. We set out this study to detect MAP2K1 mutations and potentially targetable co-mutations using a molecular multiplex approach. METHODS: Between 2012 and 2018, we routinely analyzed 14.512 NSCLC patients with two next-generation sequencing (NGS) panels. In a subset of patients, fluorescence in-situ hybridization was performed to detect rearrangements or amplifications. We assessed clinical parameters and co-occurring mutations and compared treatment outcomes of different forms of systemic therapy. RESULTS: We identified 66 (0.5%) patients with MAP2K1 mutations. Both adenocarcinoma (n = 62) and squamous cell carcinoma (n = 4) histology. The presence of the mutations was linked to smoking, and transversions were more common than transitions. K57 N was the most frequent MAP2K1 mutation (n = 25). Additional mutations were found in 57 patients (86.4%). Mutations of TP53 were detected in 33 patients, followed by KEAP1 mutations in 28.1%. 24 patients (36.4%) had either MAP2K1-only or a co-occurring aberration considered targetable, including EGFR mutations, a BRAF V600E mutation and ROS1 rearrangements. Outcome analyses revealed a trend toward benefit from pemetrexed treatment. CONCLUSION: Our analysis shows that MAP2K1-mutated NSCLC patients might frequently present with potentially targetable aberrations. Their role in providing resistance in these subtypes and the possible therapeutic opportunities justify further analyses of this rare NSCLC subgroup.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , MAP Quinasa Quinasa 1/genética , Mutación , Factor 2 Relacionado con NF-E2 , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética
5.
J Thorac Oncol ; 14(4): 606-616, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30605727

RESUMEN

INTRODUCTION: Although KRAS mutations in NSCLC have been considered mutually exclusive driver mutations for a long time, there is now growing evidence that KRAS-mutated NSCLC represents a genetically heterogeneous subgroup. We sought to determine genetic heterogeneity with respect to cancer-related co-mutations and their correlation with different KRAS mutation subtypes. METHODS: Diagnostic samples from 4507 patients with NSCLC were analyzed by next-generation sequencing by using a panel of 14 genes and, in a subset of patients, fluorescence in situ hybridization. Next-generation sequencing with an extended panel of 14 additional genes was performed in 101 patients. Molecular data were correlated with clinical data. Whole-exome sequencing was performed in two patients. RESULTS: We identified 1078 patients with KRAS mutations, of whom 53.5% had at least one additional mutation. Different KRAS mutation subtypes showed different patterns of co-occurring mutations. Besides mutations in tumor protein p53 gene (TP53) (39.4%), serine/threonine kinase 11 gene (STK11) (19.8%), kelch like ECH associated protein 1 gene (KEAP1) (12.9%), and ATM serine/threonine kinase gene (ATM) (11.9%), as well as MNNG HOS Transforming gene (MET) amplifications (15.4%) and erb-b2 receptor tyrosine kinase 2 gene (ERBB2) amplifications (13.8%, exclusively in G12C), we found rare co-occurrence of targetable mutations in EGFR (1.2%) and BRAF (1.2%). Whole-exome sequencing of two patients with co-occurring phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha gene (PIK3CA) mutation revealed clonality of mutated KRAS in one patient and subclonality in the second, suggesting different evolutionary backgrounds. CONCLUSION: KRAS-mutated NSCLC represents a genetically heterogeneous subgroup with a high frequency of co-occurring mutations in cancer-associated pathways, partly associated with distinct KRAS mutation subtypes. This diversity might have implications for understanding the variability of treatment outcome in KRAS-mutated NSCLC and for future trial design.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación
6.
Artículo en Inglés | MEDLINE | ID: mdl-32914023

RESUMEN

PURPOSE: Third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are effective in acquired resistance (AR) to early-generation EGFR TKIs in EGFR-mutant lung cancer. However, efficacy is marked by interindividual heterogeneity. We present the molecular profiles of pretreatment and post-treatment samples from patients treated with third-generation EGFR TKIs and their impact on treatment outcomes. METHODS: Using the databases of two lung cancer networks and two lung cancer centers, we molecularly characterized 124 patients with EGFR p.T790M-positive AR to early-generation EGFR TKIs. In 56 patients, correlative analyses of third-generation EGFR TKI treatment outcomes and molecular characteristics were feasible. In addition, matched post-treatment biopsy samples were collected for 29 patients with progression to third-generation EGFR TKIs. RESULTS: Co-occurring genetic aberrations were found in 74.4% of EGFR p.T790-positive samples (n = 124). Mutations in TP53 were the most frequent aberrations detected (44.5%; n = 53) and had no significant impact on third-generation EGFR TKI treatment. Mesenchymal-epithelial transition factor (MET) amplifications were found in 5% of samples (n = 6) and reduced efficacy of third-generation EGFR TKIs significantly (eg, median progression-free survival, 1.0 months; 95% CI, 0.37 to 1.72 v 8.2 months; 95% CI, 1.69 to 14.77 months; P ≤ .001). Genetic changes in the 29 samples with AR to third-generation EGFR TKIs were found in EGFR (eg, p.T790M loss, acquisition of p.C797S or p.G724S) or in other genes (eg, MET amplification, KRAS mutations). CONCLUSION: Additional genetic aberrations are frequent in EGFR-mutant lung cancer and may mediate innate and AR to third-generation EGFR TKIs. MET amplification was strongly associated with primary treatment failure and was a common mechanism of AR to third-generation EGFR TKIs. Thus, combining EGFR inhibitors with TKIs targeting common mechanisms of resistance may delay AR.

7.
Nat Commun ; 9(1): 4655, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405134

RESUMEN

The emergence of acquired resistance against targeted drugs remains a major clinical challenge in lung adenocarcinoma patients. In a subgroup of these patients we identified an association between selection of EGFRT790M-negative but EGFRG724S-positive subclones and osimertinib resistance. We demonstrate that EGFRG724S limits the activity of third-generation EGFR inhibitors both in vitro and in vivo. Structural analyses and computational modeling indicate that EGFRG724S mutations may induce a conformation of the glycine-rich loop, which is incompatible with the binding of third-generation TKIs. Systematic inhibitor screening and in-depth kinetic profiling validate these findings and show that second-generation EGFR inhibitors retain kinase affinity and overcome EGFRG724S-mediated resistance. In the case of afatinib this profile translates into a robust reduction of colony formation and tumor growth of EGFRG724S-driven cells. Our data provide a mechanistic basis for the osimertinib-induced selection of EGFRG724S-mutant clones and a rationale to treat these patients with clinically approved second-generation EGFR inhibitors.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Acrilamidas , Compuestos de Anilina , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Receptores ErbB/química , Receptores ErbB/metabolismo , Femenino , Humanos , Cinética , Ratones , Ratones Desnudos , Mutación/genética , Células 3T3 NIH , Piperazinas/química , Unión Proteica/efectos de los fármacos , Conformación Proteica , Inhibidores de Proteínas Quinasas/química
8.
J Pathol ; 246(1): 67-76, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29885057

RESUMEN

The anaplastic lymphoma kinase (ALK) rearrangement defines a distinct molecular subtype of non-small cell lung cancer (NSCLC). Despite the excellent initial efficacy of ALK inhibitors in patients with ALK+ lung cancer, resistance occurs almost inevitably. To date, there is no reliable biomarker allowing the identification of patients at higher risk of relapse. Here, we analysed a subset of 53 ALK+ tumours with and without TP53 mutation and ALK+ NSCLC cell lines by NanoString nCounter technology. We found that the co-occurrence of early TP53 mutations in ALK+ NSCLC can lead to chromosomal instability: 24% of TP53-mutated patients showed amplifications of known cancer genes such as MYC (14%), CCND1 (10%), TERT (5%), BIRC2 (5%), ORAOV1 (5%), and YAP1 (5%). MYC-overexpressing ALK+ TP53-mutated cells had a proliferative advantage compared to wild-type cells. ChIP-Seq data revealed MYC-binding sites within the promoter region of EML4, and MYC overexpression in ALK+ TP53-mutated cells resulted in an upregulation of EML4-ALK, indicating a potential MYC-dependent resistance mechanism in patients with increased MYC copy number. Our study reveals that ALK+ NSCLC represents a more heterogeneous subgroup of tumours than initially thought, and that TP53 mutations in that particular cancer type define a subset of tumours that harbour chromosomal instability, leading to the co-occurrence of pathogenic aberrations. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Amplificación de Genes , Inestabilidad Genómica , Neoplasias Pulmonares/genética , Mutación , Proteínas Proto-Oncogénicas c-myc/genética , Translocación Genética , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Anciano de 80 o más Años , Quinasa de Linfoma Anaplásico/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
9.
Clin Cancer Res ; 24(13): 3087-3096, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29615460

RESUMEN

Purpose:KEAP1 and NFE2L2 mutations are associated with impaired prognosis in a variety of cancers and with squamous cell carcinoma formation in non-small cell lung cancer (NSCLC). However, little is known about frequency, histology dependence, molecular and clinical presentation as well as response to systemic treatment in NSCLC.Experimental Design: Tumor tissue of 1,391 patients with NSCLC was analyzed using next-generation sequencing (NGS). Clinical and pathologic characteristics, survival, and treatment outcome of patients with KEAP1 or NFE2L2 mutations were assessed.Results:KEAP1 mutations occurred with a frequency of 11.3% (n = 157) and NFE2L2 mutations with a frequency of 3.5% (n = 49) in NSCLC patients. In the vast majority of patients, both mutations did not occur simultaneously. KEAP1 mutations were found mainly in adenocarcinoma (AD; 72%), while NFE2L2 mutations were more common in squamous cell carcinoma (LSCC; 59%). KEAP1 mutations were spread over the whole protein, whereas NFE2L2 mutations were clustered in specific hotspot regions. In over 80% of the patients both mutations co-occurred with other cancer-related mutations, among them also targetable aberrations like activating EGFR mutations or MET amplification. Both patient groups showed different patterns of metastases, stage distribution and performance state. No patient with KEAP1 mutation had a response on systemic treatment in first-, second-, or third-line setting. Of NFE2L2-mutated patients, none responded to second- or third-line therapy.Conclusions:KEAP1- and NFE2L2-mutated NSCLC patients represent a highly heterogeneous patient cohort. Both are associated with different histologies and usually are found together with other cancer-related, partly targetable, genetic aberrations. In addition, both markers seem to be predictive for chemotherapy resistance. Clin Cancer Res; 24(13); 3087-96. ©2018 AACR.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Factor 2 Relacionado con NF-E2/genética , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Línea Celular Tumoral , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico , Inhibidores de Proteínas Quinasas/uso terapéutico
10.
Clin Cancer Res ; 22(19): 4837-4847, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27252416

RESUMEN

PURPOSE: To identify novel mechanisms of resistance to third-generation EGFR inhibitors in patients with lung adenocarcinoma that progressed under therapy with either AZD9291 or rociletinib (CO-1686). EXPERIMENTAL DESIGN: We analyzed tumor biopsies from seven patients obtained before, during, and/or after treatment with AZD9291 or rociletinib (CO-1686). Targeted sequencing and FISH analyses were performed, and the relevance of candidate genes was functionally assessed in in vitro models. RESULTS: We found recurrent amplification of either MET or ERBB2 in tumors that were resistant or developed resistance to third-generation EGFR inhibitors and show that ERBB2 and MET activation can confer resistance to these compounds. Furthermore, we identified a KRASG12S mutation in a patient with acquired resistance to AZD9291 as a potential driver of acquired resistance. Finally, we show that dual inhibition of EGFR/MEK might be a viable strategy to overcome resistance in EGFR-mutant cells expressing mutant KRAS CONCLUSIONS: Our data suggest that heterogeneous mechanisms of resistance can drive primary and acquired resistance to third-generation EGFR inhibitors and provide a rationale for potential combination strategies. Clin Cancer Res; 22(19); 4837-47. ©2016 AACR.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Acrilamidas/uso terapéutico , Adenocarcinoma del Pulmón , Anciano , Compuestos de Anilina/uso terapéutico , Receptores ErbB/antagonistas & inhibidores , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pirimidinas/uso terapéutico
11.
Expert Rev Mol Diagn ; 16(4): 423-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26822148

RESUMEN

Melanoma is one of the clinically most important cancer types considering its high mortality rate and that it is commonly diagnosed in relatively young people. With the advent of targeted therapies and, more recently, immune checkpoint inhibitors, more treatment options are available resulting in higher patient survival rates. However, the successful application of these targeted therapies critically depends on the reliable detection of molecular aberrations. Today, massively parallel sequencing techniques enable us to analyze large sets of genes in a relatively short time. It has allowed increased knowledge of acquired somatic mutations in melanoma and has helped to identify new targets for personalized therapy, and potentially may help to predict response to immune therapies. Described here are the development of sequencing techniques, how their improvement has changed diagnosis, prognosis and management of malignant melanoma and the future perspectives of melanoma diagnostics in the routine clinical setting.


Asunto(s)
Biomarcadores de Tumor/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Melanoma/diagnóstico , Análisis de Secuencia de ADN/métodos , GTP Fosfohidrolasas/genética , Humanos , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas B-raf/genética
12.
J Thorac Oncol ; 10(7): 1049-57, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26102443

RESUMEN

INTRODUCTION: The Network Genomic Medicine Lung Cancer was set up to rapidly translate scientific advances into early clinical trials of targeted therapies in lung cancer performing molecular analyses of more than 3500 patients annually. Because sequential analysis of the relevant driver mutations on fixated samples is challenging in terms of workload, tissue availability, and cost, we established multiplex parallel sequencing in routine diagnostics. The aim was to analyze all therapeutically relevant mutations in lung cancer samples in a high-throughput fashion while significantly reducing turnaround time and amount of input DNA compared with conventional dideoxy sequencing of single polymerase chain reaction amplicons. METHODS: In this study, we demonstrate the feasibility of a 102 amplicon multiplex polymerase chain reaction followed by sequencing on an Illumina sequencer on formalin-fixed paraffin-embedded tissue in routine diagnostics. Analysis of a validation cohort of 180 samples showed this approach to require significantly less input material and to be more reliable, robust, and cost-effective than conventional dideoxy sequencing. Subsequently, 2657 lung cancer patients were analyzed. RESULTS: We observed that comprehensive biomarker testing provided novel information in addition to histological diagnosis and clinical staging. In 2657 consecutively analyzed lung cancer samples, we identified driver mutations at the expected prevalence. Furthermore we found potentially targetable DDR2 mutations at a frequency of 3% in both adenocarcinomas and squamous cell carcinomas. CONCLUSION: Overall, our data demonstrate the utility of systematic sequencing analysis in a clinical routine setting and highlight the dramatic impact of such an approach on the availability of therapeutic strategies for the targeted treatment of individual cancer patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/genética , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Estudios de Cohortes , ADN de Neoplasias/análisis , ADN de Neoplasias/genética , ADN de Neoplasias/aislamiento & purificación , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN/métodos
13.
PLoS One ; 10(4): e0120079, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25844809

RESUMEN

Soft tissue sarcomas are a heterogeneous group of tumors with many different subtypes. In 2014 an estimated 12,020 newly diagnosed cases and 4,740 soft tissue sarcoma related deaths can be expected in the United States. Many soft tissue sarcomas are associated with poor prognosis and therapeutic options are often limited. The evolution of precision medicine has not yet fully reached the clinical treatment of sarcomas since therapeutically tractable genetic changes have not been comprehensively studied so far. We analyzed a total of 484 adult-type malignant mesenchymal tumors by MET fluorescence in situ hybridization and MET and hepatocyte growth factor immunohistochemistry. Eleven different entities were included, among them the most common and clinically relevant subtypes and tumors with specific translocations or complex genetic changes. MET protein expression was observed in 2.6% of the cases, all of which were either undifferentiated pleomorphic sarcomas or angiosarcomas, showing positivity rates of 14% and 17%, respectively. 6% of the tumors showed hepatocyte growth factor overexpression, mainly seen in undifferentiated pleomorphic sarcomas and angiosarcomas, but also in clear cell sarcomas, malignant peripheral nerve sheath tumors, leiomyosarcomas and gastrointestinal stromal tumors. MET and hepatocyte growth factor overexpression were significantly correlated and may suggest an autocrine activation in these tumors. MET FISH amplification and copy number gain were present in 4% of the tumors (15/413). Two samples, both undifferentiated pleomorphic sarcomas, fulfilled the criteria for high level amplification of MET, one undifferentiated pleomorphic sarcoma reached an intermediate level copy number gain, and 12 samples of different subtypes were categorized as low level copy number gains for MET. Our findings indicate that angiosarcomas and undifferentiated pleomorphic sarcomas rather than other frequent adult-type sarcomas should be enrolled in screening programs for clinical trials with MET inhibitors. The screening methods should include both in situ hybridization and immunohistochemistry.


Asunto(s)
Hemangiosarcoma/genética , Factor de Crecimiento de Hepatocito/genética , Proteínas Proto-Oncogénicas c-met/genética , Sarcoma/genética , Biomarcadores/metabolismo , Amplificación de Genes , Dosificación de Gen , Hemangiosarcoma/metabolismo , Hemangiosarcoma/patología , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Hibridación Fluorescente in Situ , Proteínas Proto-Oncogénicas c-met/metabolismo , Sarcoma/metabolismo , Sarcoma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...