Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cell Biosci ; 13(1): 231, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129901

RESUMEN

Nephrotoxicity is a significant concern during the development of new drugs or when assessing the safety of chemicals in consumer products. Traditional methods for testing nephrotoxicity involve animal models or 2D in vitro cell cultures, the latter of which lack the complexity and functionality of the human kidney. 3D in vitro models are created by culturing human primary kidney cells derived from urine in a 3D microenvironment that mimics the fluid shear stresses of the kidney. Thus, 3D in vitro models provide more accurate and reliable predictions of human nephrotoxicity compared to existing 2D models. In this review, we focus on precision nephrotoxicity testing using 3D in vitro models with human autologous urine-derived kidney cells as a promising approach for evaluating drug safety.

2.
J Chem Inf Model ; 63(3): 1028-1043, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36646658

RESUMEN

It is imperative to explore the gigantic available chemical space to identify new scaffolds for drug lead discovery. Identifying potent hits from virtual screening of large chemical databases is challenging and computationally demanding. Rather than the traditional two-dimensional (2D)/three-dimensional (3D) approaches on smaller chemical libraries of a few hundred thousand compounds, we screened a ZINC library of 15 million compounds using multiple computational methods. Here, we present the successful application of a virtual screening methodology that identifies several chemotypes as starting hits against lactate dehydrogenase-A (LDHA). From 29 compounds identified from virtual screening, 17 (58%) showed IC50 values < 63 µM, two showed single-digit micromolar inhibition, and the most potent hit compound had IC50 down to 117 nM. We enriched the database and employed an ensemble approach by combining 2D fingerprint similarity searches, pharmacophore modeling, molecular docking, and molecular dynamics. WaterMap calculations were carried out to explore the thermodynamics of surface water molecules and gain insights into the LDHA binding pocket. The present work has led to the discovery of two new chemical classes, including compounds with a succinic acid monoamide moiety or a hydroxy pyrimidinone ring system. Selected hits block lactate production in cells and inhibit pancreatic cancer cell lines with cytotoxicity IC50 down to 12.26 µM against MIAPaCa-2 cells and 14.64 µM against PANC-1, which, under normoxic conditions, is already comparable or more potent than most currently available known LDHA inhibitors.


Asunto(s)
Simulación de Dinámica Molecular , Neoplasias Pancreáticas , Humanos , Simulación del Acoplamiento Molecular , Lactato Deshidrogenasa 5 , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Neoplasias Pancreáticas/tratamiento farmacológico
3.
Mater Today Adv ; 152022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36212078

RESUMEN

Despite being widely applied in drug development, existing in vitro 2D cell-based models are not suitable to assess chronic mitochondrial toxicity. A novel in vitro assay system mimicking in vivo microenvironment for this purpose is urgently needed. The goal of this study is to establish a 3D cell platform as a reliable, sensitive, cost-efficient, and high-throughput assay to predict drug-induced mitochondrial toxicity. We evaluated a long-term culture of human primary urine-derived stem cells (USC) seeded in 3D silk fiber matrix (3D USC-SFM) and further tested chronic mitochondrial toxicity induced by Zalcitabine (ddC, a nucleoside reverse transcriptase inhibitor) as a test drug, compared to USC grown in spheroids. The numbers of USC remain steady in 3D spheroids for 4 weeks and 3D SFM for 6 weeks. However, the majority (95%) of USC survived in 3D SFM, while cell numbers significantly declined in 3D spheroids at 6 weeks. Highly porous SFM provides large-scale numbers of cells by increasing the yield of USC 125-fold/well, which enables the carrying of sufficient cells for multiple experiments with less labor and lower cost, compared to 3D spheroids. The levels of mtDNA content and mitochondrial superoxide dismutase2 [SOD2] as an oxidative stress biomarker and cell senescence genes (RB and P16, p21) of USC were all stably retained in 3D USC-SFM, while those were significantly increased in spheroids. mtDNA content and mitochondrial mass in both 3D culture models significantly decreased six weeks after treatment of ddC (0.2, 2, and 10 µM), compared to 0.1% DMSO control. Levels of complexes I, II, and III significantly decreased in 3D SFM-USC treated with ddC, compared to only complex I level which declined in spheroids. A dose- and time-dependent chronic MtT displayed in the 3D USC-SFM model, but not in spheroids. Thus, a long-term 3D culture model of human primary USC provides a cost-effective and sensitive approach potential for the assessment of drug-induced chronic mitochondrial toxicity.

4.
Pharmaceutics ; 14(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35631624

RESUMEN

Mitochondrial toxicity (Mito-Tox) risk has increased due to the administration of several classes of drugs, particularly some life-long antiretroviral drugs for HIV+ individuals. However, no suitable in vitro assays are available to test long-term Mito-Tox (≥4 weeks). The goal of this study is to develop a 3D spheroid system of human primary urine-derived stem cells (USC) for the prediction of drug-induced delayed Mito-Tox. The cytotoxicity and Mito-Tox were assessed in 3D USC spheroids 4 weeks after treatment with antiretroviral drugs: zalcitabine (ddC; 0.1, 1 and 10 µM), tenofovir (TFV; 3, 30 and 300 µM) or Raltegravir (RAL; 2, 20 and 200 µM). Rotenone (RTNN, 10 µM) and 0.1% DMSO served as positive and negative controls. Despite only mild cytotoxicity, ddC significantly inhibited the expression of oxidative phosphorylation enzyme Complexes I, III, and IV; and RAL transiently reduced the level of Complex IV. A significant increase in caspase 3 and ROS/RNS level but a decrease in total ATP were observed in USC treated with ddC, TFV, RAL, and RTNN. Levels of mtDNA content and mitochondrial mass were decreased in ddC but minimally or not in TFV- and RAL-treated spheroids. Thus, 3D USC spheroid using antiretroviral drugs as a model offers an alternative platform to assess drug-induced late Mito-Tox.

5.
Front Psychiatry ; 12: 721999, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512420

RESUMEN

Post-Traumatic Stress Disorder (PTSD) is a debilitating mental health disorder that occurs after exposure to a traumatic event. Patients with comorbid chronic pain experience affective distress, worse quality of life, and poorer responses to treatments for pain or PTSD than those with either condition alone. FDA-approved PTSD treatments are often ineffective analgesics, requiring additional drugs to treat co-morbid symptoms. Therefore, development of new treatment strategies necessitate a better understanding of the pathophysiology of PTSD and comorbid pain. The single prolonged stress (SPS) model of PTSD induces the development of persistent mechanical allodynia and thermal hyperalgesia. Increased Nociceptin/Orphanin FQ (N/OFQ) levels in serum and CSF accompany these exaggerated nociceptive responses, as well as increased serum levels of the pro-inflammatory cytokine tumor necrosis factor (TNF-α). Therefore, the primary goal was to determine the role of TNF-α in the development of SPS-induced allodynia/hyperalgesia and elevated serum and CNS N/OFQ using two approaches: TNF-α synthesis inhibition, and blockade with anti-TNF-α antibody that acts primarily in the periphery. Administration of TNF-α synthesis blocker, thalidomide (THL), immediately after SPS prevented increased TNF-α and development of allodynia and hyperalgesia. The THL effect lasted at least 21 days, well after thalidomide treatment ended (day 5). THL also prevented SPS-induced increases in serum N/OFQ and reversed regional N/OFQ mRNA expression changes in the CNS. Serum TNF-α increases detected at 4 and 24 h post SPS were not accompanied by blood brain barrier disruption. A single injection of anti-TNF-α antibody to male and female rats during the SPS procedure prevented the development of allodynia, hyperalgesia, and elevated serum N/OFQ, and reduced SPS-induced anxiety-like behaviors in males. Anti-TNFα treatment also blocked development of SPS-induced allodynia in females, and blocked increased hypothalamic N/OFQ in males and females. This suggests that a peripheral TNF-α surge is necessary for the initiation of allodynia associated with SPS, as well as the altered central and peripheral N/OFQ that maintains nociceptive sensitivity. Therefore, early alleviation of TNF-α provides new therapeutic options for investigation as future PTSD and co-morbid pain treatments.

6.
Front Oncol ; 11: 659963, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33987095

RESUMEN

Cancer recurrence remains a great fear for many cancer survivors following their initial, apparently successful, therapy. Despite significant improvement in the overall survival of many types of cancer, metastasis accounts for ~90% of all cancer mortality. There is a growing understanding that future therapeutic practices must accommodate this unmet medical need in preventing metastatic recurrence. Accumulating evidence supports dormant disseminated tumor cells (DTCs) as a source of cancer recurrence and recognizes the need for novel strategies to target these tumor cells. This review presents strategies to target dormant quiescent DTCs that reside at secondary sites. These strategies aim to prevent recurrence by maintaining dormant DTCs at bay, or eradicating them. Various approaches are presented, including: reinforcing the niche where dormant DTCs reside in order to keep dormant DTCs at bay; promoting cell intrinsic mechanisms to induce dormancy; preventing the engagement of dormant DTCs with their supportive niche in order to prevent their reactivation; targeting cell-intrinsic mechanisms mediating long-term survival of dormant DTCs; sensitizing dormant DTCs to chemotherapy treatments; and, inhibiting the immune evasion of dormant DTCs, leading to their demise. Various therapeutic approaches, some of which utilize drugs that are already approved, or have been tested in clinical trials and may be considered for repurposing, will be discussed. In addition, clinical evidence for the presence of dormant DTCs will be reviewed, along with potential prognostic biomarkers to enable the identification and stratification of patients who are at high risk of recurrence, and who could benefit from novel dormant DTCs targeting therapies. Finally, we will address the shortcomings of current trial designs for determining activity against dormant DTCs and provide novel approaches.

7.
Bioorg Med Chem Lett ; 41: 127923, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33705908

RESUMEN

The design, synthesis, and biological evaluation of a series novel N1­methyl pyrazolo[4,3-d]pyrimidines as inhibitors of tubulin polymerization and colchicine binding were described here. Synthesis of target compounds involved alkylation of the pyrazolo scaffold, which afforded two regioisomers. These were separated, characterized and identified with 1H NMR and NOESY spectroscopy. All compounds, except 10, inhibited [3H]colchicine binding to tubulin, and the potent inhibition was similar to that obtained with CA-4. Compounds 9 and 11-13 strongly inhibited the polymerization of tubulin, with IC50 values of 0.45, 0.42, 0.49 and 0.42 µM, respectively. Compounds 14-16 inhibited the polymerization of tubulin with IC50s near ∼1 µM. Compounds 9, 12, 13 and 16 inhibited MCF-7 breast cancer cell lines and circumvented ßIII-tubulin mediated cancer cell resistance to taxanes and other MTAs, and compounds 9-17 circumvented Pgp-mediated drug resistance. In the standard NCI testing protocol, compound 9 exhibited excellent potency with low to sub nanomolar GI50 values (≤10 nM) against most tumor cell lines, including several multidrug resistant phenotypes. Compound 9 was significantly (P < 0.0001) better than paclitaxel at reducing MCF-7 TUBB3 (ßIII-tubulin overexpressing) tumors in a mouse xenograft model. Collectively, these studies support the further preclinical development of the pyrazolo[4,3-d]pyrimidine scaffold as a new generation of tubulin inhibitors and 9 as an anticancer agent with advantages over paclitaxel.


Asunto(s)
Antineoplásicos/farmacología , Microtúbulos , Pirimidinas/farmacología , Moduladores de Tubulina/farmacología , Animales , Antineoplásicos/química , Línea Celular Tumoral , Humanos , Ratones , Modelos Moleculares , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Pirimidinas/química , Relación Estructura-Actividad , Moduladores de Tubulina/química
8.
Bioorg Med Chem ; 35: 116061, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33647840

RESUMEN

The efficacy of quinazoline-based antiglioma agents has been attributed to their effects on microtubule dynamics.1,2 The design, synthesis and biological evaluation of quinazolines as potent inhibitors of multiple intracellular targets, including microtubules and multiple RTKs, is described. In addition to the known ability of quinazolines 1 and 2 to cause microtubule depolymerization, they were found to be low nanomolar inhibitors of EGFR, VEGFR-2 and PDGFR-ß. Low nanomolar inhibition of EGFR was observed for 1-3 and 9-10. Compounds 1 and 4 inhibited VEGFR-2 kinase with activity better than or equal to that of sunitinib. In addition, compounds 1 and 2 had similar potency to sunitinib in the CAM angiogenesis assay. Multitarget activities of compounds in the present study demonstrates that the quinazolines can affect multiple pathways and could lead to these agents having antitumor potential caused by their activity against multiple targets.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Quinazolinas/síntesis química , Quinazolinas/química , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
9.
Bioorg Med Chem ; 29: 115887, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310545

RESUMEN

A series of methoxy naphthyl substituted cyclopenta[d]pyrimidine compounds, 4-10, were designed and synthesized to study the influence of the 3-D conformation on microtubule depolymerizing and antiproliferative activities. NOESY studies with the N,2-dimethyl-N-(6'-methoxynaphthyl-1'-amino)-cyclopenta[d]pyrimidin-4-amine (4) showed hindered rotation of the naphthyl ring around the cyclopenta[d]pyrimidine scaffold. In contrast, NOESY studies with N,2-dimethyl-N-(5'-methoxynaphthyl-2'-amino)-cyclopenta[d]pyrimidin-4-amine (5) showed free rotation of the naphthyl ring around the cyclopenta[d]pyrimidine scaffold. The rotational flexibility and conformational dissimilarity between 4 and 5 led to a significant difference in biological activities. Compound 4 is inactive while 5 is the most potent in this series with potent microtubule depolymerizing effects and low nanomolar IC50 values in vitro against a variety of cancer cell lines. The ability of 5 to inhibit tumor growth in vivo was investigated in a U251 glioma xenograft model. The results show that 5 had better antitumor effects than the positive control temozolomide and have identified 5 as a potential preclinical candidate for further studies. The influence of conformation on the microtubule depolymerizing and antitumor activity forms the basis for the development of conformation-activity relationships for the cyclopenta[d]pyrimidine class of microtubule targeting agents.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Ciclopentanos/farmacología , Glioma/tratamiento farmacológico , Microtúbulos/efectos de los fármacos , Pirimidinas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias Encefálicas/patología , Proliferación Celular/efectos de los fármacos , Ciclopentanos/síntesis química , Ciclopentanos/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Glioma/patología , Humanos , Masculino , Ratones , Ratones Desnudos , Modelos Moleculares , Conformación Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
10.
Bioorg Med Chem Lett ; 28(18): 3085-3093, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30098869

RESUMEN

The design, synthesis and biological evaluation of 4-substituted 5-methyl-furo[2,3-d]pyrimidines is described. The Ullmann coupling of 5-methyl-furo[2,3-d]pyrimidine with aryl iodides was successfully optimized to synthesize these analogs. Compounds 6-10 showed single-digit nanomolar inhibition of EGFR kinase. Compounds 1 and 6-10 inhibited VEGFR-2 kinase better than or equal to sunitinib. Compounds 1 and 3-10 were more potent inhibitors of PDGFR-ß kinase than sunitinib. In addition, compounds 4-11 had higher potency in the CAM angiogenesis assay than sunitinib. Compound 1 showed in vivo efficacy in an A498 renal xenograft model in mice. Multiple RTK and tubulin inhibitory attributes of 1, 4, 6 and 8 indicates that these compounds may be valuable preclinical single agents targeting multiple intracellular targets.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
11.
J Steroid Biochem Mol Biol ; 178: 89-98, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29155210

RESUMEN

Androgen ablation is the standard of care prescribed to patients with advanced or metastatic prostate cancer (PCa) to slow down disease progression. Unfortunately, a majority of PCa patients under androgen ablation progress to castration-resistant prostate cancer (CRPC). Several mechanisms including alternative intra-prostatic androgen production and androgen-independent androgen receptor (AR) activation have been proposed for CRPC progression. Aldo-keto reductase family 1 member C3 (AKR1C3), a multi-functional steroid metabolizing enzyme, is specifically expressed in the cytoplasm of PCa cells; and positive immunoreactivity of the type A γ-aminobutyric acid receptor (GABAAR), an ionotropic receptor and ligand-gated ion channel, is detected on the membrane of PCa cells. We studied a total of 72 radical prostatectomy cases by immunohistochemistry, and identified that 21 cases exhibited positive immunoreactivities for both AKR1C3 and GABAAR. In the dual positive cancer cases, AKR1C3 and GABAAR subunit α1 were either expressed in the same cells or in neighboring cells. Among several possible substrates, AKR1C3 reduces 5α-dihydrotesterone (DHT) to form 5α-androstane-3α, 17ß-diol (3α-diol). 3α-diol is a neurosteroid that acts as a positive allosteric modulator of the GABAAR in the central nervous system (CNS). We examined the hypothesis that 3α-diol-regulated pathological effects in the prostate are GABAAR-dependent, but are independent of the AR. In GABAAR-positive, AR-negative human PCa PC-3 cells, 3α-diol significantly stimulated cell growth in culture and the in ovo chorioallantoic membrane (CAM) xenograft model. 3α-diol also up-regulated expression of the epidermal growth factor (EGF) family of growth factors and activation of EGF receptor (EGFR) and Src as measured by quantitative polymerase chain reaction and immunoblotting, respectively. Inclusion of GABAAR antagonists reversed 3α-diol-stimulated tumor cell growth, expression of EGF family members, and activation of EGFR and Src to the level observed in untreated cells. Results from the present study suggest that 3α-diol may act as an alternative intra-prostatic neurosteroid that activates AR-independent PCa progression. The involvement of AKR1C3-mediated steroid metabolisms in modulating GABAAR activation and promoting PCa progression requires continued studies.


Asunto(s)
Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/metabolismo , Anabolizantes/farmacología , Androstano-3,17-diol/farmacología , Neoplasias de la Próstata/patología , Receptores de GABA-A/metabolismo , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/genética , Proliferación Celular , Progresión de la Enfermedad , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores de GABA-A/genética , Transducción de Señal , Células Tumorales Cultivadas
12.
Oncotarget ; 8(42): 71833-71844, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29069750

RESUMEN

High-grade gliomas such as glioblastomas (GBM) present a deadly prognosis following diagnosis and very few effective treatment options. Here, we investigate if the small molecule AG488 can be an effective therapy against GBM with both anti-angiogenic as well as an anti-microtubule inhibiting modalities, using a human G55 glioma xenograft model in nude mice. From in vitro studies, we report that AG488 incubation reduced cell viability in G55 and HMEC-1 cells more so than TMZ treatment, and AG488 treatment also decreased cell viability in normal astrocytes, but not as much as for G55 cells (p<0.0001). In vivo investigations indicated that AG488 therapy helped reduce tumor volumes (p<0.0001), prolong survival (p<0.01), increase tumor perfusion (p<0.01), and decrease microvessel density (MVD) (p<0.05), compared to untreated mice or mice treated with non-specific IgG, in the G55 xenograft model. Additionally, AG488 did not induce apoptosis in normal mouse brain tissue. Animal survival and tumor volume changes for AG488 were comparable to TMZ or anti-VEGF therapies, however AG488 was found to be more effective in decreasing tumor-related vascularity (perfusion and MVD). AG488 is a potential novel therapy against high-grade gliomas.

13.
J Inflamm Res ; 10: 75-81, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28652797

RESUMEN

BACKGROUND: Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease that primarily affects premature infants. It is characterized by inflammation and leukocyte infiltration that can progress to intestinal necrosis, perforation, systemic inflammatory response, and death. In this study, we examined the effect of FLLL32, a curcumin analog, on an NEC-like neonatal intestinal injury model. METHODS: NEC was induced in CD-1 mice pups using the Paneth cell ablation and Klebsiella infection model. Pups were divided into sham, NEC, and NEC + FLLL32 groups. At the end of the experiment, pups were euthanized; whole blood and small intestines were harvested. Intestinal inflammatory cytokine profile, in vivo intestinal permeability using serum fluorescein isothiocyanate-dextran, and histological injury scores were compared between the groups. RESULTS AND CONCLUSION: FLLL32-treated pups had lower intestinal injury, improved intestinal permeability, and lower proinflammatory cytokine profiles compared to those in untreated pups with NEC. These results suggest that FLLL32 plays a protective role in NEC.

14.
Bioorg Med Chem Lett ; 27(7): 1602-1607, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28258797

RESUMEN

In an effort to optimize the structural requirements for combined cytostatic and cytotoxic effects in single agents, a series of 5-(arylthio)-9H-pyrimido[4,5-b]indole-2,4-diamines 3-7 were synthesized and evaluated as inhibitors of receptor tyrosine kinases (RTKs) as well as thymidylate synthase (TS). The synthesis of these compounds involved the nucleophilic displacement of the common intermediate 5-bromo/5-chloro-9H-pyrimido[4,5-b]indole-2,4-diamine with appropriate aryl thiols. A novel four step synthetic scheme to the common intermediate was developed which is more efficient relative to the previously reported six-step sequence. Biological evaluation of these compounds indicated dual activity in RTKs and human TS (hTS). In the VEGFR-2 assay, compound 5 was equipotent to the standard compound semaxanib and was better than standard TS inhibitor pemetrexed, in the hTS assay. Compounds 3, 6 and 7 were nanomolar inhibitors of hTS and were several fold better than pemetrexed.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Indoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Timidilato Sintasa/antagonistas & inhibidores , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos/síntesis química , Línea Celular Tumoral , Cisplatino/farmacología , Antagonistas del Ácido Fólico/síntesis química , Antagonistas del Ácido Fólico/farmacología , Compuestos Heterocíclicos con 3 Anillos/síntesis química , Humanos , Indoles/síntesis química , Ratones , Pemetrexed/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Pirimidinas/síntesis química , Pirroles/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Cancer Lett ; 388: 149-157, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27939695

RESUMEN

Cancer cells have a unique metabolic profile and mitochondria have been shown to play an important role in chemoresistance, tumor progression and metastases. This unique profile can be exploited by mitochondrial-targeted anticancer therapies. A small anticancer molecule, AG311, was previously shown to possess anticancer and antimetastatic activity in two cancer mouse models and to induce mitochondrial depolarization. This study defines the molecular effects of AG311 on the mitochondria to elucidate its observed efficacy. AG311 was found to competitively inhibit complex I activity at the ubiquinone-binding site. Complex I as a target for AG311 was further established by measuring oxygen consumption rate in tumor tissue isolated from AG311-treated mice. Cotreatment of cells and animals with AG311 and dichloroacetate, a pyruvate dehydrogenase kinase inhibitor that increases oxidative metabolism, resulted in synergistic cell kill and reduced tumor growth. The inhibition of mitochondrial oxygen consumption by AG311 was found to reduce HIF-1α stabilization by increasing oxygen tension in hypoxic conditions. Taken together, these results suggest that AG311 at least partially mediates its antitumor effect through inhibition of complex I, which could be exploited in its use as an anticancer agent.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Indoles/uso terapéutico , Pirimidinas/uso terapéutico , Animales , Hipoxia de la Célula , Humanos , Ratones
16.
Exp Dermatol ; 26(8): 697-704, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27892604

RESUMEN

It been shown that IL-6 modulates TGF-ß1 expression in fibroblasts, however, what role IL-6 plays concerning TGF-ßR expression and function in skin is unknown. Therefore, the aim of this study was to investigate the mechanism by which IL-6 might modulates TGF-ß receptors in skin. Skin from WT, IL-6 over-expressing mice and IL-6 treated keratinocyte cultures was analysed for TGF-ßRI and TGF-ßRII expression via histology, PCR and flow cytometry. Receptor function was assessed by cell migration, bromodeoxyuridine (BrdU) proliferation assays, and Smad7 expression and Smad2/3 phosphorylation. Receptor localization within the membrane was determined by co-immunoprecipitation. IL-6 overexpression and treatment increased TGF-ßRII expression in the epidermis. IL-6 treatment of keratinocytes induced TGF-ßRI and II expression and augmented TGF-ß1-induced function as demonstrated through increased migration and decreased proliferation. Additionally, IL-6 treatment of keratinocytes altered receptor activity as indicated by altered Smad2/3 phosphorylation and increased Smad7 and membrane localization. These results suggest that IL-6 regulates keratinocyte function by modulating TGF-ßRI and II expression and signal transduction via trafficking of the receptor to lipid raft pools.


Asunto(s)
Interleucina-6/metabolismo , Queratinocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Animales , Animales Recién Nacidos , Técnicas de Inactivación de Genes , Ratones , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor Tipo II de Factor de Crecimiento Transformador beta , Proteínas Smad/metabolismo
17.
Bioorg Med Chem ; 25(2): 545-556, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27894589

RESUMEN

The utility of cytostatic antiangiogenic agents (AA) in cancer chemotherapy lies in their combination with cytotoxic chemotherapeutic agents. Clinical combinations of AA with microtubule targeting agents (MTAs) have been particularly successful. The discovery, synthesis and biological evaluations of a series of 7-benzyl-N-substituted-pyrrolo[3,2-d]pyrimidin-4-amines are reported. Novel compounds which inhibit proangiogenic receptor tyrosine kinases (RTKs) including vascular endothelial growth factor receptor-2 (VEGFR-2), platelet-derived growth factor receptor-ß (PDGFR-ß) and epidermal growth factor receptor (EGFR), along with microtubule targeting in single molecules are described. These compounds also inhibited blood vessel formation in the chicken chorioallantoic membrane (CAM) assay, and some potently inhibited tubulin assembly (with activity comparable to that of combretastatin A-4 (CA)). In addition, some of the analogs circumvent the most clinically relevant tumor resistance mechanisms (P-glycoprotein and ß-III tubulin expression) to microtubule targeting agents (MTA). These MTAs bind at the colchicine site on tubulin. Two analogs displayed two to three digit nanomolar GI50 values across the entire NCI 60 tumor cell panel and one of these, compound 7, freely water soluble as its HCl salt, afforded excellent in vivo antitumor activity against an orthotopic triple negative 4T1 breast cancer model and was superior to doxorubicin.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Descubrimiento de Drogas , Microtúbulos/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Pirroles/síntesis química , Pirroles/química , Proteínas Tirosina Quinasas Receptoras/metabolismo , Relación Estructura-Actividad
18.
Ther Adv Med Oncol ; 8(2): 126-37, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26929788

RESUMEN

In spite of decades of research, cancer survival has increased only modestly. This is because most research is based on models of primary tumors. Slow recognition has begun that disseminated, dormant cancer cells (micrometastatic cells) that are generally resistant to chemotherapy are the culprits in recurrence, and until these are targeted effectively we can expect only slow progress in increasing overall survival from cancer. This paper reviews efforts to understand the mechanisms by which cancer cells can become dormant, and thereby identify potential targets and drugs either on the market or in clinical trials that purport to prevent metastasis. This review targets the most recent literature because several excellent reviews have covered the literature from more than two years ago. The paper also describes recent work in the authors' laboratories to develop a screening-based approach that does not require understanding of mechanisms of action or the molecular target. Success of this approach shows that targeting micrometastatic cells is definitely feasible.

19.
BMC Cancer ; 15: 522, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26177924

RESUMEN

BACKGROUND: High grade gliomas (HGGs; grades III and IV) are the most common primary brain tumors in adults, and their malignant nature ranks them fourth in incidence of cancer death. Standard treatment for glioblastomas (GBM), involving surgical resection followed by radiation and chemotherapy with temozolomide (TMZ) and the anti-angiogenic therapy bevacizumab, have not substantially improved overall survival. New therapeutic agents are desperately needed for this devastating disease. Here we study the potential therapeutic agent AG119 in a pre-clinical model for gliomas. AG119 possesses both anti-angiogenic (RTK inhibition) and antimicrotubule cytotoxic activity in a single molecule. METHODS: GL261 glioma-bearing mice were either treated with AG119, anti-VEGF (vascular endothelial growth factor) antibody, anti c-Met antibody or TMZ, and compared to untreated tumor-bearing mice. Animal survival was assessed, and tumor volumes and vascular alterations were monitored with morphological magnetic resonance imaging (MRI) and perfusion-weighted imaging, respectively. RESULTS: Percent survival of GL261 HGG-bearing mice treated with AG119 was significantly higher (p < 0.001) compared to untreated tumors. Tumor volumes (21-31 days following intracerebral implantation of GL261 cells) were found to be significantly lower for AG119 (p < 0.001), anti-VEGF (p < 0.05) and anti-c-Met (p < 0.001) antibody treatments, and TMZ-treated (p < 0.05) mice, compared to untreated controls. Perfusion data indicated that both AG119 and TMZ were able to reduce the effect of decreasing perfusion rates significantly (p < 0.05 for both), when compared to untreated tumors. It was also found that IC50 values for AG119 were much lower than those for TMZ in T98G and U251 cells. CONCLUSIONS: These data support further exploration of the anticancer activity AG119 in HGG, as this compound was able to increase animal survival and decrease tumor volumes in a mouse GL261 glioma model, and that AG119 is also not subject to methyl guanine transferase (MGMT) mediated resistance, as is the case with TMZ, indicating that AG119 may be potentially useful in treating resistant gliomas.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Metilasas de Modificación del ADN , Enzimas Reparadoras del ADN , Dacarbazina/análogos & derivados , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Glioma/patología , Ratones , Análisis de Supervivencia , Temozolomida , Proteínas Supresoras de Tumor
20.
BMC Cancer ; 15: 404, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25971923

RESUMEN

BACKGROUND: Cancer-specific survival has changed remarkably little over the past half century, mainly because metastases that are occult at diagnosis and generally resistant to chemotherapy subsequently develop months, years or even decades following definitive therapy. Targeting the dormant micrometastases responsible for these delayed or occult metastases would represent a major new tool in cancer patient management. Our hypothesis is that these metastases develop from micrometastatic cells that are suppressed by normal extracellular matrix (ECM). METHODS: A new screening method was developed that compared the effect of drugs on the proliferation of cells grown on a normal ECM gel (small intestine submucosa, SISgel) to cells grown on plastic cell culture plates. The desired endpoint was that cells on SISgel were more sensitive than the same cells grown as monolayers. Known cancer chemotherapeutic agents show the opposite pattern. RESULTS: Screening 13,000 compounds identified two leads with low toxicity in mice and EC50 values in the range of 3-30 µM, depending on the cell line, and another two leads that were too toxic to mice to be useful. In a novel flank xenograft method of suppressed/dormant cells co-injected with SISgel into the flank, the lead compounds significantly eliminated the suppressed cells, whereas conventional chemotherapeutics were ineffective. Using a 4T1 triple negative breast cancer model, modified for physiological metastatic progression, as predicted, both lead compounds reduced the number of large micrometastases/macrometastases in the lung. One of the compounds also targeted cancer stem cells (CSC) isolated from the parental line. The CSC also retained their stemness on SISgel. Mechanistic studies showed a mild, late apoptotic response and depending on the compound, a mild arrest either at S or G2/M in the cell cycle. CONCLUSIONS: In summary we describe a novel, first in class set of compounds that target micrometastatic cells and prevent their reactivation to form recurrent tumors/macrometastases.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Micrometástasis de Neoplasia/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Concentración 50 Inhibidora , Dosis Máxima Tolerada , Ratones Endogámicos BALB C , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...