Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770640

RESUMEN

Recent studies have highlighted the potential involvement of reactive oxygen species (ROS) and microglia, a major source of ROS, in the pathophysiology of schizophrenia. In our study, we explored how the second-generation antipsychotic risperidone (RIS) affects ROS regulation and microglial activation in the hippocampus using a mouse ketamine (KET) model of schizophrenia. KET administration resulted in schizophrenia-like behaviors in male C57BL/6J mice, such as impaired prepulse inhibition (PPI) of the acoustic startle response and hyper-locomotion. These behaviors were mitigated by RIS. We found that the gene expression level of an enzyme responsible for ROS production (Nox2), which is primarily associated with activated microglia, was lower in KET/RIS-treated mice than in KET-treated mice. Conversely, the levels of antioxidant enzymes (Ho-1 and Gclc) were higher in KET/RIS-treated mice. The microglial density in the hippocampus was increased in KET-treated mice, which was counteracted by RIS. Hierarchical cluster analysis revealed three morphological subtypes of microglia. In control mice, most microglia were resting-ramified (type I, 89.7%). KET administration shifted the microglial composition to moderately ramified (type II, 44.4%) and hyper-ramified (type III, 25.0%). In KET/RIS-treated mice, type II decreased to 32.0%, while type III increased to 34.0%. An in vitro ROS assay showed that KET increased ROS production in dissociated hippocampal microglia, and this effect was mitigated by RIS. Furthermore, we discovered that a NOX2 inhibitor could counteract KET-induced behavioral deficits. These findings suggest that pharmacological inhibition of ROS production by RIS may play a crucial role in ameliorating schizophrenia-related symptoms. Moreover, modulating microglial activation to regulate ROS production has emerged as a novel avenue for developing innovative treatments for schizophrenia.

2.
Neuropsychopharmacology ; 48(11): 1668-1679, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37277574

RESUMEN

Fear generalization is a neurobiological process by which an organism interprets a novel stimulus as threatening because of its similarity to previously learned fear-inducing stimuli. Because recent studies have suggested that the communication between oligodendrocyte precursor cells (OPCs) and parvalbumin (PV)-expressing GABAergic neurons (PV neurons) may play critical roles in stress-related disorders, we examined the involvement of these cells in fear generalization. We first tested the behavioral characteristics of mouse models for conventional fear conditioning (cFC) and modified FC (mFC) with severe electric foot shocks and found that fear generalization was observed in mice treated with mFC but not in mice treated with cFC. The expression levels of genes related to OPCs, oligodendrocytes (OLs), and myelin in the ventral hippocampus were lower in mFC mice than in cFC mice. The densities of OPCs and OLs were decreased in the ventral hippocampus of mFC mice compared to cFC mice. The myelination ratios of PV neurons in the ventral hippocampus were lower in mFC mice than in cFC mice. The chemogenetic activation of PV neurons in the ventral hippocampus of mFC mice reduced fear generalization. The expression levels of genes related to OPCs, OLs, and myelin were recovered following the activation of PV neurons. Finally, the myelination ratios of PV neurons were increased after the activation of PV neurons. Our results suggest that altered regulation of OLs specifically associated with axons of PV neurons in the ventral hippocampus may underlie the generalization of remote fear memory following severe stress exposure.


Asunto(s)
Memoria , Parvalbúminas , Ratones , Masculino , Animales , Parvalbúminas/metabolismo , Memoria/fisiología , Hipocampo/metabolismo , Miedo/fisiología , Neuronas GABAérgicas/metabolismo , Oligodendroglía/metabolismo , Ratones Endogámicos C57BL
3.
Br J Pharmacol ; 179(20): 4857-4877, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35797426

RESUMEN

BACKGROUND AND PURPOSE: Chondroitin sulfate proteoglycan (CSPG) constitutes the neurogenic niche in the hippocampus. The reduction of hippocampal neurogenesis is involved in ageing-related cognitive decline and dementia. The purpose of this study is to find candidates that improve cognitive function by analysing the effects of memantine (MEM), a therapeutic agent for Alzheimer's disease, on CSPG and adult hippocampal neurogenesis. EXPERIMENTAL APPROACH: The effects of MEM on neurogenesis-related cells and CSPG content were assessed in the hippocampus of middle-aged mice. The MEM-induced alterations in gene expressions of neurotrophins and enzymes associated with biosynthesis and degradation of CSPG in the hippocampus also were measured. The effects of MEM on cognitive function were estimated using a behavioural test battery. The same set of behavioural tests was applied to evaluate the effects of pharmacological depletion of CSPG in the hippocampus. KEY RESULTS: The densities of newborn granule cells and content of CSPG in the hippocampus were increased by MEM. The expression levels of the enzyme responsible for the biosynthesis CSPG were increased by MEM. The neurotrophin-related molecules were activated by MEM. Short- and long-term memory performance was improved by MEM. Pharmacological depletion of CSPG impairs the effects of MEM on cognitive improvement in middle-aged mice. CONCLUSION AND IMPLICATIONS: MEM regulates the biosynthesis and degradation of CSPG, which may underlie the improvement of cognitive function via the promotion of adult hippocampal neurogenesis. These results imply that CSPG-related enzymes potentially may be attractive candidates for the treatment of ageing-related cognitive decline.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato , Memantina , Animales , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/farmacología , Cognición , Memantina/farmacología , Ratones , Factores de Crecimiento Nervioso/farmacología , Neurogénesis
4.
J Nutr Biochem ; 108: 109093, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35724814

RESUMEN

Lignans are plant-derived compounds that act as partial estrogen agonists. Chondroitin sulfate proteoglycans (CSPGs) represent one of the major components of the extracellular matrix. Here we aimed to understand the role of sesamin (SES), a major lignan compound, in the biosynthesis and degradation of CSPGs in the mouse hippocampus because CSPGs play a key role in the regulation of cognitive functions through the promotion of adult neurogenesis. The expression of the pro-inflammatory cytokine interleukin-1ß was decreased by SES administration in the hippocampus of lipopolysaccharide (LPS)-treated mice, a model of neuroinflammation-induced cognitive deficits. The expression of genes related to biosynthesis and degradation of CSPGs in the hippocampus of LPS-treated mice was both increased and decreased by SES administration. Further, the diffuse extracellular matrix labeling of CSPGs by Wisteria floribunda agglutinin (WFA) in the hippocampus of LPS-treated mice was increased by SES administration. The densities of neural stem cells, late transit-amplifying cells, and newborn-granule cells in the hippocampus of LPS-treated mice were also increased by SES administration. Moreover, SES-induced alterations in gene expression, WFA labeling, and adult neurogenesis in LPS-treated mice were more evident in the dorsal hippocampus (center of cognition) than in the ventral hippocampus (center of emotion). Neither LPS nor SES administration affected locomotor activity, anxiety-like behavior, and depression-related behavior. However, impairments in contextual memory and sensorimotor gating in LPS-treated mice were recovered by SES administration. Our results show that SES can promote adult hippocampal neurogenesis through the upregulation of CSPGs, which may alleviate cognitive deficits induced by neuroinflammation.


Asunto(s)
Sulfatos de Condroitina , Lignanos , Animales , Proteoglicanos Tipo Condroitín Sulfato , Cognición , Dioxoles , Modelos Animales de Enfermedad , Hipocampo , Lignanos/farmacología , Lignanos/uso terapéutico , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Regulación hacia Arriba
5.
Neuropharmacology ; 206: 108941, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34990615

RESUMEN

Microglia, resident immune cells in the brain, are shown to mediate the crosstalk between psychological stress and depression. Interestingly, increasing evidence indicates that sex hormones, particularly estrogen, are involved in the regulation of immune system. In this study, we aimed to understand the potential effects of chronic social defeat stress (CSDS) and genistein (GEN), an estrogenic compound of the plant origin, on neuron-microglia interactions in the mouse hippocampus. The time spent in the avoidance zone in the social interaction test was increased by CSDS 1 day after the exposure, while the avoidance behavior returned to control levels 14 days after the CSDS exposure. Similar results were obtained from the elevated plus-maze test. However, the immobility time in the forced swim test was increased by CSDS 14 days after the exposure, and the depression-related behavior was in part alleviated by GEN. The numerical densities of microglia in the hippocampus were increased by CSDS, and they were decreased by GEN. The voxel densities of synaptic structures and synaptic puncta colocalized with microglia were decreased by CSDS, and they were increased by GEN. Neither CSDS nor GEN affected the gene expressions of major pro-inflammatory cytokines. Conversely, the expression levels of genes related to neurotrophic factors were decreased by CSDS, and they were partially reversed by GEN. These findings show that GEN may in part alleviate stress-related symptoms, and the effects of GEN may be associated with the modulation of neuron-microglia signaling via chemokines and neurotrophic factors in the hippocampus.


Asunto(s)
Depresión/tratamiento farmacológico , Genisteína/farmacología , Hipocampo/efectos de los fármacos , Microglía/efectos de los fármacos , Fitoestrógenos/farmacología , Transducción de Señal/efectos de los fármacos , Derrota Social , Estrés Psicológico , Sinapsis/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Depresión/etiología , Depresión/inmunología , Modelos Animales de Enfermedad , Hipocampo/inmunología , Ratones , Estrés Psicológico/complicaciones , Estrés Psicológico/inmunología
6.
PLoS One ; 16(8): e0254067, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34351918

RESUMEN

BACKGROUND AND PURPOSE: The impact of the paraoxonase-1 (PON1) polymorphism, Q192R, on platelet inhibition in response to clopidogrel remains controversial. We aimed to investigate the association between carrier status of PON1 Q192R and high platelet reactivity (HPR) with clopidogrel in patients undergoing elective neurointervention. METHODS: Post-clopidogrel platelet reactivity was measured using a VerifyNow® P2Y12 assay in P2Y12 reaction units (PRU) for consecutive patients before the treatment. Genotype testing was performed for PON1 Q192R and CYP2C19*2 and *3 (no function alleles), and *17. PRU was corrected on the basis of hematocrit. We investigated associations between factors including carrying ≥1 PON1 192R allele and HPR defined as original and corrected PRU ≥208. RESULTS: Of 475 patients (232 men, median age, 68 years), HPR by original and corrected PRU was observed in 259 and 199 patients (54.5% and 41.9%), respectively. Carriers of ≥1 PON1 192R allele more frequently had HPR by original and corrected PRU compared with non-carriers (91.5% vs 85.2%, P = 0.031 and 92.5% vs 85.9%, P = 0.026, respectively). In multivariate analyses, carrying ≥1 PON1 192R allele was associated with HPR by original (odds ratio [OR] 1.96, 95% confidence interval [CI] 1.03-3.76) and corrected PRU (OR 2.34, 95% CI 1.21-4.74) after adjustment for age, sex, treatment with antihypertensive medications, hematocrit, platelet count, total cholesterol, and carrying ≥1 CYP2C19 no function allele. CONCLUSIONS: Carrying ≥1 PON1 192R allele is associated with HPR by original and corrected PRU with clopidogrel in patients undergoing elective neurointervention, although alternative results related to other genetic polymorphisms cannot be excluded.


Asunto(s)
Alelos , Arildialquilfosfatasa/genética , Plaquetas/metabolismo , Clopidogrel/administración & dosificación , Mutación Missense , Procedimientos Neuroquirúrgicos , Activación Plaquetaria/genética , Anciano , Sustitución de Aminoácidos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Activación Plaquetaria/efectos de los fármacos , Estudios Prospectivos
7.
Neurobiol Dis ; 137: 104739, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31927145

RESUMEN

The toxic conformer of amyloid ß-protein (Aß) ending at 42 (Aß42), which contains a unique turn conformation at amino acid residue positions 22 and 23 and tends to form oligomers that are neurotoxic, was reported to play a critical role in the pathomechanisms of Alzheimer's disease (AD), in which diabetes mellitus (DM)-like mechanisms are also suggested to be operative. It remains to be established whether the attenuation of insulin signaling is involved in an increase of toxic Aß42 conformer levels. The present study investigated the association between impaired insulin metabolism and formation of toxic Aß42 conformers in the brains of an AD mouse model. In particular, we studied whether insulin deficiency or resistance affected the formation of toxic Aß42 conformers in vivo. We induced insulin deficiency and resistance in 3xTg-AD mice, a mouse AD model harboring two familial AD-mutant APP (KM670/671NL) and PS1 (M146 V) genes and a mutant TAU (P301L) gene, by streptozotocin (STZ) injection and a high fructose diet (HFuD), respectively. Cognitive impairment was significantly worsened by STZ injection but not by HFuD. Dot blot analysis revealed significant increases in total Aß42 levels and the ratio of toxic Aß42 conformer/total Aß42 in STZ-treated mice compared with control and HFuD-fed mice. Immunostaining showed the accumulation of toxic Aß42 conformers and hyper-phosphorylated tau protein (p-tau), which was more prominent in the cortical and hippocampal neurons of STZ-treated mice compared with HFuD-fed and control mice. HFuD-fed mice showed only a mild-to-moderate increase of these proteins compared with controls. Toxic Aß42 conformers were co-localized with p-tau oligomers (Pearson's correlation coefficient = 0.62) in the hippocampus, indicating their co-aggregation. Toxic Aß42 conformer levels were inversely correlated with pancreatic insulin secretion capacity as shown by fasting immunoreactive insulin levels in STZ-treated mice (correlation coefficient = -0.5879, p = .04441), but not HFuD-fed mice, suggesting a decrease in serum insulin levels correlates with toxic Aß42 conformer formation. Levels of p-Akt and phosphorylated glycogen synthase kinase-3ß measured by a homogeneous time-resolved fluorescence assay were significantly lower in STZ-treated mice than in HFuD-fed mice, suggesting a greater inhibition of brain insulin signaling by STZ than HFuD, although both levels were significantly decreased in these groups compared with controls. Iba1-positive and NOS2-positive areas in the cortex and hippocampus were significantly increased in STZ-treated mice and to a lesser extent in HFuD-fed mice compared with controls. These findings suggest that insulin deficiency rather than insulin resistance and the resultant impairment of brain insulin signaling facilitates the formation of toxic Aß42 conformer and its co-aggregation with p-tau oligomers, and that insulin deficiency is an important pathogenic factor in the progression of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/genética , Modelos Animales de Enfermedad , Insulina/metabolismo , Ratones Transgénicos , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo
8.
J Alzheimers Dis ; 58(4): 1151-1161, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28550243

RESUMEN

Apomorphine (APO) promotes intraneuronal amyloid-ß (Aß) degradation and improves memory function in an Alzheimer's disease (AD) model, 3xTg-AD mice. Since insulin resistance is increased in AD neurons, we investigated the effects of APO on brain insulin resistance in 3xTg-AD mice at early and late stages. After 1-month subcutaneous injection of Apokyn® to 3xTg-AD mice at 6 or 12 months of age, memory function was significantly improved in both age groups. Protein levels of insulin-degrading enzyme (IDE), which is linked to insulin signaling and degrades Aß, significantly increased in the 3xTg-AD mice brain compared with non-transgenic mice, and were further increased by APO. Protein levels of two types of serine-phosphorylated insulin receptor substrate-1 (IRS-1), pS616 and pS636/639, significantly decreased following APO treatment in the 13-month-old 3xTg-AD mice brain, suggesting improved brain insulin resistance. Immunostaining of the IDE, pS616 and pS636/639 IRS-1 demonstrated similar changes due to APO treatment. Thus, brain insulin resistance is considered an important therapeutic target in AD, and APO may provide improved neuronal insulin resistance.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Apomorfina/uso terapéutico , Agonistas de Dopamina/uso terapéutico , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/genética , Factores de Edad , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Apomorfina/farmacología , Modelos Animales de Enfermedad , Agonistas de Dopamina/farmacología , Conducta Exploratoria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Insulisina/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Fosforilación/efectos de los fármacos , Presenilina-1/genética
9.
Curr Alzheimer Res ; 10(1): 11-20, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22950910

RESUMEN

Amyloid-ß protein (Aß) accumulates in the neurons of Alzheimer's disease (AD) patients at an early stage of the disease. Recently, we found that Aß with a toxic turn at positions 22 and 23 accumulates in neurons in AD brain. Here, we studied the accumulation of Aß, toxic turn Aß and high-molecular-weight Aß oligomers in presenilin 1 (PS1) gene-transfected SH-SY5Y cells as well as in the brains of 3xTg-AD mice and AD patients. Immunostaining revealed that accumulation of toxic turn Aß was promoted in G384A- and I143T-mutant PS1-transfected cells and further enhanced by co-transfection of cells with the Aß-precursor protein (AßPP) gene. In contrast, accumulation of high-molecular-weight Aß oligomers was promoted in mutant PS1 cells but attenuated by co-transfection of cells with the AßPP gene. Toxic turn Aß was detected in the neurons of 3xTg-AD mice aged 2 months, when the mice were cognitively unimpaired. In contrast, high-molecular-weight Aß oligomers were detected in the neurons of 7-month-old mice, when memory dysfunction is apparent. Furthermore, immunostaining and western blotting for Rab4, Rab6 and GRP78 revealed increased levels of these proteins in mutant PS1 cells and their accumulation in the neurons of 3xTg-AD mice. Remarkably, GRP78 immunoreactivity was increased at 2 months of age. Double-label immunostaining of AD brain revealed an apparent association between toxic turn Aß and GRP78, an endoplasmic reticulum (ER) stress marker. Intraneuronal accumulation of toxic turn Aß may be associated with ER stress in the brains of AD model mice and AD patients at an early stage.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Líquido Intracelular/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Animales , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Ratones , Ratones Transgénicos , Presenilina-1/genética , Transfección , Proteínas tau/genética
10.
J Alzheimers Dis ; 27(1): 225-37, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21799252

RESUMEN

Apomorphine hydrochloride (APO) is known to be a dopamine receptor agonist, and has recently been found to be a novel drug for Alzheimer's disease (AD). We found that APO treatment ameliorated oxidative stress in an AD mouse model and specifically attenuated the hydrogen peroxide-induced p53-related apoptosis in the SH-SY5Y neuroblastoma cell line. To further understand the mechanism behind this action, we investigated the actions of APO on intracellular redox systems, such as the glutathione cycle and catalase. We studied the effects of specific inhibitors for glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (BCNU, MCS, and ATZ, respectively) on the effects of APO. Treatments with MCS or BCNU, but not ATZ, significantly attenuated the protective effects of APO. Interestingly, APO treatment elevated GPx activity, but did not increase the expression of the GPx1 protein. Although BCNU treatment attenuated APO effects, GR activity was not elevated by APO treatment. The same effects were observed in primary neuronal cultures. In addition, treatment with dopamine D1, D2, D3 and D4 receptor antagonists did not counteract the protective action of APO. Thus, APO may enhance GPx activity through dopamine receptor-independent pathways.


Asunto(s)
Apomorfina/farmacología , Apoptosis/efectos de los fármacos , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Glutatión Peroxidasa/metabolismo , Catalasa/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Neuroblastoma/patología , Estrés Oxidativo/efectos de los fármacos , Teprotido/farmacología , Glutatión Peroxidasa GPX1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...