Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36979773

RESUMEN

The pandemic outbreak of human coronavirus is a global health concern that affects people of all ages and genders, but there is currently still no effective, approved and potential drug against human coronavirus, as many other coronavirus vaccines have serious side effects while the development of small antiviral inhibitors has gained tremendous attention. For this research, HE was used as a therapeutic target, as the spike protein displays a high binding affinity for both host ACE2 and viral HE glycoprotein. Molecular docking, pharmacophore modelling and virtual screening of 38,000 natural compounds were employed to find out the best natural inhibitor against human coronaviruses with more efficiency and fewer side effects and further evaluated via MD simulation, PCA, DCCR and MMGBSA. The lead compound 'Calceolarioside B' was identified on the basis of pharmacophoric features which depict favorable binding (ΔGbind -37.6799 kcal/mol) with the HE(5N11) receptor that describes positive correlation movements in active site residues with better stability, a robust H-bond network, compactness and reliable ADMET properties. The Fraxinus sieboldiana Blume plant containing the Calceolarioside B compound could be used as a potential inhibitor that shows a higher efficacy and potency with fewer side effects. This research work will aid investigators in the testing and identification of chemicals that are effective and useful against human coronavirus.

2.
Int J Pharm ; 633: 122584, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36621704

RESUMEN

This research aimed to acquire doxorubicin loaded zinc oxide nanoflowers (DOX-ZnO-NFs) for intracellular drug cargo possessing a synergistic in-vitro anticancer activity with minimal toxicity. Zinc is the main inorganic metallic component of various enzyme systems and has the possibility of fabrication into the diverse nano-structural forms. An easy absorption and extensive tissue distribution of zinc have made it unique candidate for drug delivery system. Hence, the zinc oxide nanoflowers were prepared with sonochemical-precipitation. The developed system was characterized using the reported methods and was optimized employing design of experiment, coupled with artificial neural network approach. The optimized nanoflowers (DOX-ZnO-NFV) were anionic with particle size of 24 ± 0.05 nm, polydispersity index of <0.5, a zeta potential of -25.68 ± 0.16 mV, yield of 87.40% and encapsulation efficiency of 85.25%. DOX-ZNO-NFV depicted sustained DOX release, around 65.413% release in 30 h at pH 7.4 and assumed Weibull model with its derived parameters, a and b of 22.77 and 0.918, respectively. DOX-ZnO-NFV remained stable on storage for 3 months at 4° C/50% RH and 25° C/60% RH. DOX-ZnO-NFV displayed a zone of inhibition of 13.50 ± 1.25 mm and 25.50 ± 0.98 mm, respectively against gram-positive Staphylococcus aureus and gram-negative Escherichia coli strains, presenting the nanoflowers as self-preservative. DOX-ZnO-NFV exhibited higher in-vitro anticancer activity in Henrietta Lacks cell line, with least hemolysis compared to the free DOX and ZnO-NF. Thus, doxorubicin loaded zinc oxide nanoflowers envisioned to act as better chemotherapeutic cargos with the maximize anticancer activity and minimal toxicity.


Asunto(s)
Nanopartículas , Óxido de Zinc , Óxido de Zinc/química , Portadores de Fármacos/química , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Zinc , Nanopartículas/química , Línea Celular Tumoral
3.
Int J Biol Macromol ; 224: 1337-1355, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309237

RESUMEN

Dyes are emerging as harmful pollutants, which is one of major issues for the environmentalists and there is a urgent need for the removal of dyes from the effluents. In this context, the adsorption technology has been extensively used as an effective tool for the removal of dyes from the aqueous phase. This technique uses low-cost adsorbents and the cellulosic material is a biodegradable, cost-effective and renewable polymer, which is not soluble in the majority of solvents because of its crystalline nature and hydrogen bonding. Currently, the modified cellulosic materials for the removal of dyes from wastewater gained much attention. Moreover, the application of cellulose for water treatment can be utilized for controlling pollution and have high economic viability and availability. This review signifies the use of cellulose-based adsorbent for dyes adsorption from wastewater. The key advancement in the preparation and modification of cellulose-based adsorbents is discussed and their adsorption efficiencies are compared with other adsorbents for removal of dyes and adsorption conditions are also considered for the same. The studies reporting cellulose-based adsorption from 2003 to 2022 are included and their various properties are compared for the efficient removal of dyes. The modified cellulosic materials cellulose is a highly effective adsorbent for the remediation of effluents.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Colorantes/química , Aguas Residuales , Contaminantes Químicos del Agua/química , Adsorción , Celulosa/química , Purificación del Agua/métodos
4.
AAPS PharmSciTech ; 20(2): 81, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30645705

RESUMEN

To achieve remotely directed delivery of anticancer drugs, surface-decorated nanoparticles with ligands are reported. In this study, folic acid- and thiol-decorated chitosan nanoparticles loaded with docetaxel (DTX-NPs) were prepared for enhanced cellular internalization in cancer cells and improved oral absorption. The DTX-NPs were explored through in vitro and in vivo parameters for various parameters. The DTX-NPs were found to be monodisperse nanoparticles with an average particle size of 158.50 ± 0.36 nm, a polydispersity index of 0.36 ± 0.0, a zeta potential of + 18.30 ± 2.52 mV, and an encapsulation efficiency of 71.47 ± 5.62%. The drug release from DTX-NPs followed the Korsmeyer-Peppas model with about 78% of drug release in 12 h. In in vitro cytotoxicity studies against folate receptor, positive MDA-MBB-231 cancerous cells showed improved cytotoxicity with IC50 of 0.58 µg/mL, which is significantly lower as compared to docetaxel (DTX). Ex vivo permeation enhancement showed an efflux ratio of 0.99 indicating successful transport across the intestine. Oral bioavailability was significantly improved as Cmax and AUC were higher than DTX suspension. Overall, the results suggest that DTX-NPs can be explored as a promising carrier for oral drug delivery.


Asunto(s)
Antineoplásicos/química , Quitosano/química , Docetaxel/química , Sistemas de Liberación de Medicamentos , Ácido Fólico/química , Nanopartículas/química , Administración Oral , Animales , Disponibilidad Biológica , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Docetaxel/farmacocinética , Docetaxel/farmacología , Humanos , Conejos , Ratas , Compuestos de Sulfhidrilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA