Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Anim ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39168618

RESUMEN

Physiological responses to inhaled anesthetics vary among species. Therefore, a precise anesthetic technique is important for each individual species. In this study, we focused on the degu (Octodon degus), a small herbivorous rodent. Degus have recently begun to be used as laboratory models for brain research because of certain human-like characteristics, such as spontaneous development of Alzheimer's disease. In this study, we evaluated appropriate induction and maintenance anesthesia conditions for isoflurane and sevoflurane in degus by a stimulation test, electroencephalography (EEG), minimum alveolar concentration (MAC), and vital signs. During induction, more rapid time to loss of the righting reflex and deeper anesthesia in degus were observed in isoflurane. The MAC value for degus were 1.75 ± 0.0% in isoflurane and 2.25 ± 0.27% in sevoflurane. Whereas some degus were awake during maintenance anesthesia using both anesthetics at concentrations of ≤2%, no rats were awake when using sevoflurane at a concentration of 2%. The duration of the total flat EEG, a measure of the depth of maintenance anesthesia, was longer for isoflurane than for sevoflurane. Furthermore, higher concentrations of both anesthetics suppressed the respiratory rate in degus. These new findings regarding inhalation anesthesia in degus will contribute to future developments in the fields of laboratory animals and veterinary medicine.

2.
Anat Sci Int ; 98(3): 426-433, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36472757

RESUMEN

The Mongolian gerbil has historically been useful for brain ischemia experiments, owing to the gerbil's uniquely underdeveloped circle of Willis (CoW). This led to a gerbil model of cochlear ischemia being generated in our unit. However, we have found that the usual severe hearing loss seen in this model was not being induced consistently in recent experiments using the MON/Jms/GbsSlc gerbil (the sole commercially available gerbil in Japan). We set out to evaluate the posterior communicating artery (PcomA) in MON/Jms/GbsSlc, to re-establish whether this strain is appropriate for ischemia models. Having found that this unique feature is often lost, we then attempted to breed for the characteristic absent PcomA. India-ink perfusion revealed that the percentage of intact bilateral PcomA ("communicating type") in the MON/Jms/GbsSlc gerbil was 57%; unilateral only ("unilateral communicating type") was 39%; and completely absent PcomA ("non-communicating type") was 4%. We were able to obtain few examples of the indigenous old aged Japanese UNG/Mz gerbil strain (at University of Miyazaki). Unfortunately, the pure UNG/Mz female was too elderly for mating. Therefore, selective breeding crosses between MON/Jms/GbsSlc and male UNG/Mz were carried out. After five generations of selective breeding, the percentage of non-communicating type gerbils was significantly higher in the newly generated strain, MON/Jms/SlcMz (F6 generation; 63%) than in the MON/Jms/GbsSlc gerbil. Bilateral common carotid artery occlusion surgery demonstrated that the cerebral blood flow was significantly reduced in MON/Jms/SlcMz compared with MON/Jms/GbsSlc (p < 0.0001) and induced more hippocampal injuries in MON/Jms/SlcMz than in MON/Jms/GbsSlc (p < 0.01). In conclusion, the commercially available MON/Jms/GbsSlc gerbil can easily regain PcomA, and we established a new gerbil strain (MON/Jms/SlcMz) displaying non-PcomA.


Asunto(s)
Isquemia Encefálica , Círculo Arterial Cerebral , Animales , Masculino , Femenino , Gerbillinae/fisiología , Hipocampo , Isquemia
3.
Biochem Biophys Res Commun ; 551: 54-62, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33721831

RESUMEN

Octodon degus is said to be one of the most human-like rodents because of its improved cognitive function. Focusing on its high sociality, we cloned and characterized some sociality-related genes of degus, in order to establish degus as a highly socialized animal model in molecular biology. We cloned degus Neurexin and Neuroligin as sociality-related genes, which are genetically related to autism spectrum disorder in human. According to our results, amino acid sequences of Neurexin and Neuroligin expressed in degus brain, are highly conserved to that of human sequences. Most notably, degus Neuroligin4 is highly similar to human Neuroligin4X, which is one of the most important autism-related genes, whereas mouse Neuroligin4 is known to be poorly similar to human Neuroligin4X. Furthermore, our work also indicated that testosterone directly binds to degus Neurexin and intercepts intercellular Neurexin-Neuroligin binding. Moreover, it is of high interest that testosterone is another key molecule of the higher incidence of autism in male. These results indicated that degus has the potential for animal model of sociality, and furthermore may promote understanding toward the pathogenic mechanism of autism.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Octodon/metabolismo , Receptores de Superficie Celular/metabolismo , Testosterona/metabolismo , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Proteínas de Unión al Calcio/química , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/genética , Hipocampo/metabolismo , Humanos , Masculino , Moléculas de Adhesión de Célula Nerviosa/química , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Receptores de Superficie Celular/química , Globulina de Unión a Hormona Sexual/química , Testosterona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA