Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(11): e32053, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38882374

RESUMEN

With the recent expansion of structural variant identification in the human genome, understanding the role of these impactful variants in disease architecture is critically important. Currently, a large proportion of genome-wide-significant genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) are functionally unresolved, raising the possibility that some of these SNPs are associated with disease through linkage disequilibrium with causal structural variants. Hence, understanding the linkage disequilibrium between newly discovered structural variants and statistically significant SNPs may provide a resource for further investigation into disease-associated regions in the genome. Here we present a resource cataloging structural variant-significant SNP pairs in high linkage disequilibrium. The database is composed of (i) SNPs that have exhibited genome-wide significant association with traits, primarily disease phenotypes, (ii) newly released structural variants (SVs), and (iii) linkage disequilibrium values calculated from unphased data. All data files including those detailing SV and GWAS SNP associations and results of GWAS-SNP-SV pairs are available at the SV-SNP LD Database and can be accessed at 'https://github.com/hliang-SchrodiLab/SV_SNPs. Our analysis results represent a useful fine mapping tool for interrogating SVs in linkage disequilibrium with disease-associated SNPs. We anticipate that this resource may play an important role in subsequent studies which investigate incorporating disease causing SVs into disease risk prediction models.

2.
bioRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766120

RESUMEN

Transmembrane protein 135 (TMEM135) is a 52 kDa protein with five predicted transmembrane domains that is highly conserved across species. Previous studies have shown that TMEM135 is involved in mitochondrial dynamics, thermogenesis, and lipid metabolism in multiple tissues; however, its role in the inner ear or the auditory system is unknown. We investigated the function of TMEM135 in hearing using wild-type (WT) and Tmem135 FUN025/FUN025 ( FUN025 ) mutant mice on a CBA/CaJ background, a normal-hearing mouse strain. Although FUN025 mice displayed normal auditory brainstem response (ABR) at 1 month, we observed significantly elevated ABR thresholds at 8, 16, and 64 kHz by 3 months, which progressed to profound hearing loss by 12 months. Consistent with our auditory testing, 13-month-old FUN025 mice exhibited a severe loss of outer hair cells and spiral ganglion neurons in the cochlea. Our results using BaseScope in situ hybridization indicate that TMEM135 is expressed in the inner hair cells, outer hair cells, and supporting cells. Together, these results demonstrate that the FUN025 mutation in Tmem135 causes progressive sensorineural hearing loss, and suggest that TMEM135 is crucial for maintaining key cochlear cell types and normal sensory function in the aging cochlea.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38576540

RESUMEN

Aging is the most significant risk factor for age-related diseases in general, which is true for age-related diseases in the eye including age-related macular degeneration (AMD). Therefore, in order to identify potential therapeutic targets for these diseases, it is crucial to understand the normal aging process and how its mis-regulation could cause age-related diseases at the molecular level. Recently, abnormal lipid metabolism has emerged as one major aspect of age-related symptoms in the retina. Animal models provide excellent means to identify and study factors that regulate lipid metabolism in relation to age-related symptoms. Central to this review is the role of transmembrane protein 135 (TMEM135) in the retina. TMEM135 was identified through the characterization of a mutant mouse strain exhibiting accelerated retinal aging and positional cloning of the responsible mutation within the gene, indicating the crucial role of TMEM135 in regulating the normal aging process in the retina. Over the past decade, the molecular functions of TMEM135 have been explored in various models and tissues, providing insights into the regulation of metabolism, particularly lipid metabolism, through its action in multiple organelles. Studies indicated that TMEM135 is a significant regulator of peroxisomes, mitochondria, and their interaction. Here, we provide an overview of the molecular functions of TMEM135 which is crucial for regulating mitochondria, peroxisomes, and lipids. The review also discusses the age-dependent phenotypes in mice with TMEM135 perturbations, emphasizing the importance of a balanced TMEM135 function for the health of the retina and other tissues including the heart, liver, and adipose tissue. Finally, we explore the potential roles of TMEM135 in human age-related retinal diseases, connecting its functions to the pathobiology of AMD.

4.
Nat Commun ; 14(1): 6099, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773161

RESUMEN

Mitochondrial morphology, which is controlled by mitochondrial fission and fusion, is an important regulator of the thermogenic capacity of brown adipocytes. Adipose-specific peroxisome deficiency impairs thermogenesis by inhibiting cold-induced mitochondrial fission due to decreased mitochondrial membrane content of the peroxisome-derived lipids called plasmalogens. Here, we identify TMEM135 as a critical mediator of the peroxisomal regulation of mitochondrial fission and thermogenesis. Adipose-specific TMEM135 knockout in mice blocks mitochondrial fission, impairs thermogenesis, and increases diet-induced obesity and insulin resistance. Conversely, TMEM135 overexpression promotes mitochondrial division, counteracts obesity and insulin resistance, and rescues thermogenesis in peroxisome-deficient mice. Mechanistically, thermogenic stimuli promote association between peroxisomes and mitochondria and plasmalogen-dependent localization of TMEM135 in mitochondria, where it mediates PKA-dependent phosphorylation and mitochondrial retention of the fission factor Drp1. Together, these results reveal a previously unrecognized inter-organelle communication regulating mitochondrial fission and energy homeostasis and identify TMEM135 as a potential target for therapeutic activation of BAT.


Asunto(s)
Tejido Adiposo Pardo , Resistencia a la Insulina , Animales , Ratones , Adipocitos Marrones , Tejido Adiposo Pardo/fisiología , Homeostasis , Ratones Noqueados , Dinámicas Mitocondriales , Obesidad , Peroxisomas , Termogénesis
6.
J Vis Exp ; (193)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36971449

RESUMEN

Age-related macular degeneration (AMD) is a debilitating retinal disorder in aging populations. It is widely believed that dysfunction of the retinal pigmented epithelium (RPE) is a key pathobiological event in AMD. To understand the mechanisms that lead to RPE dysfunction, mouse models can be utilized by researchers. It has been established by previous studies that mice can develop RPE pathologies, some of which are observed in the eyes of individuals diagnosed with AMD. Here, we describe a phenotyping protocol to assess RPE pathologies in mice. This protocol includes the preparation and evaluation of retinal cross-sections using light microscopy and transmission electron microscopy, as well as that of RPE flat mounts by confocal microscopy. We detail the common types of murine RPE pathologies observed by these techniques and ways to quantify them through unbiased methods for statistical testing. As proof of concept, we use this RPE phenotyping protocol to quantify the RPE pathologies observed in mice overexpressing transmembrane protein 135 (Tmem135) and aged wild-type C57BL/6J mice. The main goal of this protocol is to present standard RPE phenotyping methods with unbiased quantitative assessments for scientists using mouse models of AMD.


Asunto(s)
Degeneración Macular , Ratones , Animales , Ratones Endogámicos C57BL , Degeneración Macular/patología , Epitelio Pigmentado de la Retina/metabolismo , Retina/metabolismo , Modelos Animales de Enfermedad , Epitelio/metabolismo
7.
Commun Biol ; 6(1): 8, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599953

RESUMEN

Transmembrane protein 135 (TMEM135) is thought to participate in the cellular response to increased intracellular lipids yet no defined molecular function for TMEM135 in lipid metabolism has been identified. In this study, we performed a lipid analysis of tissues from Tmem135 mutant mice and found striking reductions of docosahexaenoic acid (DHA) across all Tmem135 mutant tissues, indicating a role of TMEM135 in the production of DHA. Since all enzymes required for DHA synthesis remain intact in Tmem135 mutant mice, we hypothesized that TMEM135 is involved in the export of DHA from peroxisomes. The Tmem135 mutation likely leads to the retention of DHA in peroxisomes, causing DHA to be degraded within peroxisomes by their beta-oxidation machinery. This may lead to generation or alteration of ligands required for the activation of peroxisome proliferator-activated receptor a (PPARa) signaling, which in turn could result in increased peroxisomal number and beta-oxidation enzymes observed in Tmem135 mutant mice. We confirmed this effect of PPARa signaling by detecting decreased peroxisomes and their proteins upon genetic ablation of Ppara in Tmem135 mutant mice. Using Tmem135 mutant mice, we also validated the protective effect of increased peroxisomes and peroxisomal beta-oxidation on the metabolic disease phenotypes of leptin mutant mice which has been observed in previous studies. Thus, we conclude that TMEM135 has a role in lipid homeostasis through its function in peroxisomes.


Asunto(s)
Ácidos Docosahexaenoicos , Metabolismo de los Lípidos , Proteínas de la Membrana , Peroxisomas , Animales , Ratones , Ácidos Docosahexaenoicos/metabolismo , Homeostasis , Oxidación-Reducción , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Peroxisomas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo
8.
J Gen Fam Med ; 23(4): 289-290, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35600906

RESUMEN

The coronavirus disease 2019 outbreak has made it difficult to hold face-to-face BLS training sessions at university. Even in this limited situation, the effective use of combined online video course and offline training can contribute to gaining participants' confidence in conducting BLS and improving mindset than before.

9.
Sci Rep ; 12(1): 756, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031662

RESUMEN

Aging is a significant factor in the development of age-related diseases but how aging disrupts cellular homeostasis to cause age-related retinal disease is unknown. Here, we further our studies on transmembrane protein 135 (Tmem135), a gene involved in retinal aging, by examining the transcriptomic profiles of wild-type, heterozygous and homozygous Tmem135 mutant posterior eyecup samples through RNA sequencing (RNA-Seq). We found significant gene expression changes in both heterozygous and homozygous Tmem135 mutant mouse eyecups that correlate with visual function deficits. Further analysis revealed that expression of many genes involved in lipid metabolism are changed due to the Tmem135 mutation. Consistent with these changes, we found increased lipid accumulation in mutant Tmem135 eyecup samples. Since mutant Tmem135 mice have similar ocular pathologies as human age-related macular degeneration (AMD) eyes, we compared our homozygous Tmem135 mutant eyecup RNA-Seq dataset with transcriptomic datasets of human AMD donor eyes. We found similar changes in genes involved in lipid metabolism between the homozygous Tmem135 mutant eyecups and AMD donor eyes. Our study suggests that the Tmem135 mutation affects lipid metabolism as similarly observed in human AMD eyes, thus Tmem135 mutant mice can serve as a good model for the role of dysregulated lipid metabolism in AMD.


Asunto(s)
Ojo/metabolismo , Metabolismo de los Lípidos/genética , Degeneración Macular/etiología , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Mutación , Animales , Modelos Animales de Enfermedad , Humanos , Degeneración Macular/genética , Ratones Mutantes
10.
Neuropathol Appl Neurobiol ; 48(1): e12759, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34402107

RESUMEN

AIMS: This study aimed to develop a deep learning-based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick's disease (PiD), based on tau-immunostained digital slide images. METHODS: We trained the YOLOv3 object detection algorithm to detect five tau lesion types: neuronal inclusions, neuritic plaques, tufted astrocytes, astrocytic plaques and coiled bodies. We used 2522 digital slide images of CP13-immunostained slides of the motor cortex from 10 cases each of AD, PSP and CBD for training. Data augmentation was performed to increase the size of the training dataset. We next constructed random forest classifiers using the quantitative burdens of each tau lesion from motor cortex, caudate nucleus and superior frontal gyrus, ascertained from the object detection model. We split 120 cases (32 AD, 36 PSP, 31 CBD and 21 PiD) into training (90 cases) and test (30 cases) sets to train random forest classifiers. RESULTS: The resultant random forest classifier achieved an average test score of 0.97, indicating that 29 out of 30 cases were correctly diagnosed. A validation study using hold-out datasets of CP13- and AT8-stained slides from 50 cases (10 AD, 17 PSP, 13 CBD and 10 PiD) showed >92% (without data augmentation) and >95% (with data augmentation) diagnostic accuracy in both CP13- and AT8-stained slides. CONCLUSION: Our diagnostic model trained with CP13 also works for AT8; therefore, our diagnostic tool can be potentially used by other investigators and may assist medical decision-making in neuropathological diagnoses of tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Enfermedad de Pick , Parálisis Supranuclear Progresiva , Tauopatías , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Humanos , Enfermedad de Pick/patología , Parálisis Supranuclear Progresiva/patología , Tauopatías/diagnóstico , Tauopatías/patología , Proteínas tau
11.
Nat Nanotechnol ; 17(1): 21-26, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34750559

RESUMEN

The size tunability and chemical versatility of nanostructures enable electron sources of high brightness and temporal coherence, both of which are important characteristics for high-resolution electron microscopy1-3. Despite intensive research efforts in the field, so far, only conventional field emitters based on a bulk tungsten (W) needle have been able to yield atomic-resolution images. The absence of viable alternatives is in part caused by insufficient fabrication precision for nanostructured sources, which require an alignment precision of subdegree angular deviation of a nanometre-sized emission area with the macroscopic emitter axis4. To overcome this challenge, in this work we micro-engineered a LaB6 nanowire-based electron source that emitted a highly collimated electron beam with good lateral and angular alignment. We integrated a passive collimator structure into the support needle tip for the LaB6 nanowire emitter. The collimator formed an axially symmetric electric field around the emission tip of the nanowire. Furthermore, by means of micromanipulation, the support needle tip was bent to align the emitted electron beam with the emitter axis. After installation in an aberration-corrected transmission electron microscope, we characterized the performance of the electron source in a vacuum of 10-8 Pa and achieved atomic resolution in both broad-beam and probe-forming modes at 60 kV beam energy. The natural, unmonochromated 0.20 eV electron energy loss spectroscopy resolution, 20% probe-forming efficiency and 0.4% probe current peak-to-peak noise ratio paired with modest vacuum requirements make the LaB6 nanowire-based electron source an attractive alternative to the standard W-based sources for low-cost electron beam instruments.

12.
Pediatr Res ; 91(7): 1677-1685, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34285351

RESUMEN

BACKGROUND: Pathologic ocular neovascularization in retinopathy of prematurity (ROP) and other proliferative retinopathies are characterized by dysregulation of vascular endothelial growth factor-A (VEGF-A). A study of Vegfa isoform expression during oxygen-induced ischemic retinopathy (OIR) may enhance our understanding of Vegf dysregulation. METHODS: Following induction of OIR, immunohistochemistry and polymerase chain reaction (PCR) was performed on room air (RA) and OIR mice. RESULTS: Total Vegfa messenger RNA (mRNA) expression was stable in RA mice, but increased in OIR mice with a peak at postnatal day 17 (P17), before returning to RA levels. Vegfa164a expression was similar in both OIR and RA mice at P10 (Phase 1 OIR), but 2.4-fold higher in OIR mice compared to RA mice at P16 (Phase 2 OIR). At P10, Vegfa164b mRNA was similar in OIR vs RA mice, but was expressed 2.5-fold higher in OIR mice compared to RA mice at P16. At P10 and P16, Vegfr2/Vegfr1 expression was increased in OIR mice compared to RA mice. Increased activation of microglia was seen in OIR mice. CONCLUSIONS: Vegfa164a, Vegfa164b, and Vegfr1 were overexpressed in OIR mice, leading to abnormal signaling and angiogenesis. Further studies of mechanisms of Vegf dysregulation may lead to novel therapies for ROP and other proliferative retinopathies. IMPACT: Vegfa164 has two major isoforms, a proangiogenic, Vegfa164a, and an antiangiogenic, Vegfa164b, with opposing receptors, inhibitory Vegfr1, and stimulatory Vegfr2, but their role in OIR is unclear. In Phase 1 OIR, both isoforms and receptors are expressed similarly. In Phase 2 OIR, both isoforms are overexpressed, with an increased ratio of inhibitory Vegfr1. Modulation of angiogenesis by Vegf regulation enables pruning of excess angiogenesis during physiology, but results in ineffective angiogenesis during OIR. Knowledge of VEGF dysregulation may have novel therapeutic implications in the management of ROP and retinal proliferative diseases.


Asunto(s)
Neovascularización Retiniana , Retinopatía de la Prematuridad , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/metabolismo , Oxígeno/uso terapéutico , Isoformas de Proteínas , ARN Mensajero/metabolismo , Neovascularización Retiniana/genética , Retinopatía de la Prematuridad/genética , Retinopatía de la Prematuridad/patología
13.
Cells ; 10(7)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34201955

RESUMEN

The important roles of mitochondrial function and dysfunction in the process of neurodegeneration are widely acknowledged. Retinal ganglion cells (RGCs) appear to be a highly vulnerable neuronal cell type in the central nervous system with respect to mitochondrial dysfunction but the actual reasons for this are still incompletely understood. These cells have a unique circumstance where unmyelinated axons must bend nearly 90° to exit the eye and then cross a translaminar pressure gradient before becoming myelinated in the optic nerve. This region, the optic nerve head, contains some of the highest density of mitochondria present in these cells. Glaucoma represents a perfect storm of events occurring at this location, with a combination of changes in the translaminar pressure gradient and reassignment of the metabolic support functions of supporting glia, which appears to apply increased metabolic stress to the RGC axons leading to a failure of axonal transport mechanisms. However, RGCs themselves are also extremely sensitive to genetic mutations, particularly in genes affecting mitochondrial dynamics and mitochondrial clearance. These mutations, which systemically affect the mitochondria in every cell, often lead to an optic neuropathy as the sole pathologic defect in affected patients. This review summarizes knowledge of mitochondrial structure and function, the known energy demands of neurons in general, and places these in the context of normal and pathological characteristics of mitochondria attributed to RGCs.


Asunto(s)
Dinámicas Mitocondriales , Enfermedades del Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Animales , Metabolismo Energético , Humanos , Mitocondrias/patología , Terapia Molecular Dirigida
14.
Front Immunol ; 11: 573406, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193358

RESUMEN

NBSGW mice are highly immunodeficient and carry a hypomorphic mutation in the c-kit gene, providing a host environment that supports robust human hematopoietic expansion without pre-conditioning. These mice thus provide a model to investigate human hematopoietic engraftment in the absence of conditioning-associated damage. We compared transplantation of human CD34+ HSPCs purified from three different sources: umbilical cord blood, adult bone marrow, and adult G-CSF mobilized peripheral blood. HSPCs from mobilized peripheral blood were significantly more efficient (as a function of starting HSPC dose) than either cord blood or bone marrow HSPCs at generating high levels of human chimerism in the murine blood and bone marrow by 12 weeks post-transplantation. While T cells do not develop in this model due to thymic atrophy, all three HSPC sources generated a human compartment that included B lymphocytic, myeloid, and granulocytic lineages. However, the proportions of these lineages varied significantly according to HSPC source. Mobilized blood HSPCs produced a strikingly higher proportion of granulocyte lineage cells (~35% as compared to ~5%), whereas bone marrow HSPC output was dominated by B lymphocytic cells, and cord blood HSPC output was enriched for myeloid lineages. Following transplantation, all three HSPC sources showed a shift in the CD34+ subset towards CD45RA+ progenitors along with a complete loss of the CD45RA-CD49f+ long-term HSC subpopulation, suggesting this model promotes mainly short-term HSC activity. Mice transplanted with cord blood HSPCs maintained a diversified human immune compartment for at least 36 weeks after the primary transplant, although mice given adult bone marrow HSPCs had lost diversity and contained only myeloid cells by this time point. Finally, to assess the impact of non-HSPCs on transplantation outcome, we also tested mice transplanted with total or T cell-depleted adult bone marrow mononuclear cells. Total bone marrow mononuclear cell transplants produced significantly lower human chimerism compared to purified HSPCs, and T-depletion rescued B cell levels but not other lineages. Together these results reveal marked differences in engraftment efficiency and lineage commitment according to HSPC source and suggest that T cells and other non-HSPC populations affect lineage output even in the absence of conditioning-associated inflammation.


Asunto(s)
Linaje de la Célula , Trasplante de Células Madre de Sangre del Cordón Umbilical , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Huésped Inmunocomprometido/genética , Mutación , Proteínas Proto-Oncogénicas c-kit/genética , Animales , Antígenos CD34/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Supervivencia Celular , Células Cultivadas , Femenino , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas/inmunología , Humanos , Integrina alfa6/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Masculino , Ratones Mutantes , Trasplante de Células Madre de Sangre Periférica , Fenotipo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factores de Tiempo , Quimera por Trasplante
15.
Invest Ophthalmol Vis Sci ; 61(12): 16, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33064130

RESUMEN

Purpose: Aging is a critical risk factor for the development of retinal diseases, but how aging perturbs ocular homeostasis and contributes to disease is unknown. We identified transmembrane protein 135 (Tmem135) as a gene important for regulating retinal aging and mitochondrial dynamics in mice. Overexpression of Tmem135 causes mitochondrial fragmentation and pathologies in the hearts of mice. In this study, we examine the eyes of mice overexpressing wild-type Tmem135 (Tmem135 TG) and compare their phenotype to Tmem135 mutant mice. Methods: Eyes were collected for histology, immunohistochemistry, electron microscopy, quantitative PCR, and Western blot analysis. Before tissue collection, electroretinography (ERG) was performed to assess visual function. Mouse retinal pigmented epithelium (RPE) cultures were established to visualize mitochondria. Results: Pathologies were observed only in the RPE of Tmem135 TG mice, including degeneration, migratory cells, vacuolization, dysmorphogenesis, cell enlargement, and basal laminar deposit formation despite similar augmented levels of Tmem135 in the eyecup (RPE/choroid/sclera) and neural retina. We observed reduced mitochondria number and size in the Tmem135 TG RPE. ERG amplitudes were decreased in 365-day-old mice overexpressing Tmem135 that correlated with reduced expression of RPE cell markers. In Tmem135 mutant mice, RPE cells are thicker, smaller, and denser than their littermate controls without any signs of degeneration. Conclusions: Overexpression and mutation of Tmem135 cause contrasting RPE abnormalities in mice that correlate with changes in mitochondrial shape and size (overfragmented in TG vs. overfused in mutant). We conclude proper regulation of mitochondrial homeostasis by TMEM135 is critical for RPE health.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación/genética , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina/metabolismo , Animales , Western Blotting , Recuento de Células , Células Cultivadas , Modelos Animales de Enfermedad , Electrorretinografía , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/fisiopatología , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Degeneración Retiniana/metabolismo , Degeneración Retiniana/fisiopatología , Epitelio Pigmentado de la Retina/patología
16.
Exp Biol Med (Maywood) ; 245(17): 1571-1583, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32515224

RESUMEN

IMPACT STATEMENT: Mitochondria are dynamic organelles undergoing fission and fusion. Proper regulation of this process is important for healthy aging process, as aberrant mitochondrial dynamics are associated with several age-related diseases/pathologies. However, it is not well understood how imbalanced mitochondrial dynamics may lead to those diseases and pathologies. Here, we aimed to determine metabolic alterations in tissues and cells from mouse models with over-fused (fusion > fission) and over-fragmented (fusion < fission) mitochondria that display age-related disease pathologies. Our results indicated tissue-dependent sensitivity to these mitochondrial changes, and metabolic pathways likely affected by aberrant mitochondrial dynamics. This study provides new insights into how dysregulated mitochondrial dynamics could lead to functional abnormalities of tissues and cells.


Asunto(s)
Proteínas de la Membrana/genética , Metaboloma/genética , Proteínas Mitocondriales/genética , Mutación/genética , Animales , Células Cultivadas , Cerebelo/metabolismo , Hipocampo/metabolismo , Redes y Vías Metabólicas , Metabolómica , Ratones Endogámicos C57BL , Miocardio/metabolismo , Análisis de Componente Principal , Epitelio Pigmentado de la Retina/metabolismo
17.
Mol Vis ; 26: 257-276, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256029

RESUMEN

Purpose: Retinopathy of prematurity (ROP) is a condition of aberrant retinal vascularization in premature infants in response to high levels of oxygen used for critical care that can potentially cause blindness. Although therapies to mitigate vascular abnormalities are being evaluated, functional deficits often remain in patients with treated or regressed ROP. This study investigated long-term outcomes of hyperoxia on retinal morphology and function using a mouse model of oxygen-induced ischemic retinopathy (OIR). Methods: Twenty-two mice were exposed to 77% oxygen to induce OIR, while 23 age-matched control mice were raised in room air (RA). In vivo fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and focal electroretinography (fERG) were performed at P19, P24, P32, and P47, followed by histological assessments of retinal morphology, gliosis, microglia activation, and apoptosis. Results: FA in OIR mice showed capillary attrition despite peripheral revascularization. Inner retina thinning was detected with SD-OCT; outer and inner retinal dysfunction were demonstrated with fERG. Histology of the OIR mice exhibited a thin, disorganized structure. Immunohistochemistry showed increased gliosis, microglial activation, and apoptosis with increasing age from P19 to P47. The synapses between rod photoreceptor cells and rod bipolar cells were ectopically localized in the OIR mice. Conclusions: We demonstrated histological evidence of persistent ectopic synapses, prolonged cellular apoptosis, and gliosis in the OIR retina that corresponded with long-term in vivo evidence of capillary attrition, inner retinal thinning, and dysfunction despite full peripheral revascularization. Further studies on the mechanisms underlying these persistent phenotypes could enhance our understanding of ROP pathogenesis and lead to new therapeutic targets to preserve visual function in premature infants.


Asunto(s)
Apoptosis , Hiperoxia/complicaciones , Oxígeno/efectos adversos , Retina/crecimiento & desarrollo , Retina/patología , Neovascularización Retiniana/patología , Retinopatía de la Prematuridad/fisiopatología , Animales , Animales Recién Nacidos , Dendritas/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía , Angiografía con Fluoresceína , Gliosis/patología , Hiperoxia/patología , Hiperoxia/fisiopatología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , Células Fotorreceptoras/metabolismo , Proteína Quinasa C-alfa/metabolismo , Retina/metabolismo , Células Bipolares de la Retina/metabolismo , Retinopatía de la Prematuridad/diagnóstico por imagen , Sinapsis/metabolismo , Tomografía de Coherencia Óptica
18.
Genetics ; 214(1): 121-134, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31754016

RESUMEN

One major aspect of the aging process is the onset of chronic, low-grade inflammation that is highly associated with age-related diseases. The molecular mechanisms that regulate these processes have not been fully elucidated. We have identified a spontaneous mutant mouse line, small with kinky tail (skt), that exhibits accelerated aging and age-related disease phenotypes including increased inflammation in the brain and retina, enhanced age-dependent retinal abnormalities including photoreceptor cell degeneration, neurodegeneration in the hippocampus, and reduced lifespan. By positional cloning, we identified a deletion in chondroitin sulfate synthase 1 (Chsy1) that is responsible for these phenotypes in skt mice. CHSY1 is a member of the chondroitin N-acetylgalactosaminyltransferase family that plays critical roles in the biosynthesis of chondroitin sulfate, a glycosaminoglycan (GAG) that is attached to the core protein to form the chondroitin sulfate proteoglycan (CSPG). Consistent with this function, the Chsy1 mutation dramatically decreases chondroitin sulfate GAGs in the retina and hippocampus. In addition, macrophage and neutrophil populations appear significantly altered in the bone marrow and spleen of skt mice, suggesting an important role for CHSY1 in the functioning of these immune cell types. Thus, our study reveals a previously unidentified impact of CHSY1 in the retina and hippocampus. Specifically, chondroitin sulfate (CS) modification of proteins by CHSY1 appears critical for proper regulation of immune cells of the myeloid lineage and for maintaining the integrity of neuronal tissues, since a defect in this gene results in increased inflammation and abnormal phenotypes associated with age-related diseases.


Asunto(s)
Sulfatos de Condroitina/metabolismo , Glucuronosiltransferasa/metabolismo , Inflamación/metabolismo , Enzimas Multifuncionales/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/genética , Degeneración Retiniana/metabolismo , Factores de Edad , Animales , Apoptosis/fisiología , Femenino , Glucuronosiltransferasa/genética , Inflamación/genética , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enzimas Multifuncionales/genética , Mutación , N-Acetilgalactosaminiltransferasas/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Proteínas/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/patología
19.
PLoS One ; 13(8): e0201986, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30102730

RESUMEN

Tissues with high-energy demand including the heart are rich in the energy-producing organelles, mitochondria, and sensitive to mitochondrial dysfunction. While alterations in mitochondrial function are increasingly recognized in cardiovascular diseases, the molecular mechanisms through which changes in mitochondria lead to heart abnormalities have not been fully elucidated. Here, we report that transgenic mice overexpressing a novel regulator of mitochondrial dynamics, transmembrane protein 135 (Tmem135), exhibit increased fragmentation of mitochondria and disease phenotypes in the heart including collagen accumulation and hypertrophy. The gene expression analysis showed that genes associated with ER stress and unfolded protein response, and especially the pathway involving activating transcription factor 4, are upregulated in the heart of Tmem135 transgenic mice. It also showed that gene expression changes in the heart of Tmem135 transgenic mice significantly overlap with those of aged mice in addition to the similarity in cardiac phenotypes, suggesting that changes in mitochondrial dynamics may be involved in the development of heart abnormalities associated with aging. Our study revealed the pathological consequence of overexpression of Tmem135, and suggested downstream molecular changes that may underlie those disease pathologies.


Asunto(s)
Expresión Génica , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Miocardio/metabolismo , Animales , Biomarcadores , Biología Computacional/métodos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/mortalidad , Cardiopatías/patología , Inmunohistoquímica , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias Cardíacas/genética , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Análisis de Secuencia de ADN
20.
Theranostics ; 7(7): 2078-2091, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28656061

RESUMEN

Cardiovascular disease is a leading cause of death worldwide. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) hold immense clinical potential and recent studies have enabled generation of virtually pure hPSC-CMs with high efficiency in chemically defined and xeno-free conditions. Despite these advances, hPSC-CMs exhibit an immature phenotype and are arrhythmogenic in vivo, necessitating development of strategies to mature these cells. hPSC-CMs undergo significant metabolic alterations during differentiation and maturation. A detailed analysis of the metabolic changes accompanying maturation of hPSC-CMs may prove useful in identifying new strategies to expedite hPSC-CM maturation and also may provide biomarkers for testing or validating hPSC-CM maturation. In this study we identified global metabolic changes which take place during long-term culture and maturation of hPSC-CMs derived from three different hPSC lines. We have identified several metabolic pathways, including phospholipid metabolism and pantothenate and Coenzyme A metabolism, which showed significant enrichment upon maturation in addition to fatty acid oxidation and metabolism. We also identified increases in glycerophosphocholine and the glycerophosphocholine:phosphocholine ratio as potential metabolic biomarkers of maturation. These biomarkers were also affected in a similar manner during murine heart development in vivo. These results support that hPSC-CM maturation is associated with extensive metabolic changes in metabolic network utilization and understanding the roles of these metabolic changes has the potential to develop novel approaches to monitor and expedite hPSC-CM maturation.


Asunto(s)
Factores Biológicos/análisis , Diferenciación Celular , Metabolómica , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/fisiología , Animales , Células Cultivadas , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA