Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 79(6): 1418-1422, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38661223

RESUMEN

OBJECTIVES: Artemisinin-resistant Plasmodium falciparum malaria is currently spreading globally, including in Africa. Artemisinin resistance also leads to resistance to partner drugs used in artemisinin-based combination therapies. Sequencing of kelch13, which is associated with artemisinin resistance, culture-based partner drug susceptibility tests, and ELISA-based growth measurement are conventionally used to monitor resistance; however, their application is challenging in resource-limited settings. METHODS: An experimental package for field studies with minimum human/material requirements was developed. RESULTS: First, qPCR-based SNP assay was applied in artemisinin resistance screening, which can detect mutations within 1 h and facilitate sample selection for subsequent processes. It had 100% sensitivity and specificity compared with DNA sequencing in the detection of the two common artemisinin resistance mutations in Uganda, C469Y and A675V. Moreover, in the partner drug susceptibility test, the cultured samples were dry-preserved on a 96-well filter paper plate and shipped to the central laboratory. Parasite growth was measured by ELISA using redissolved samples. It well reproduced the results of direct ELISA, reducing significant workload in the field (Pearson correlation coefficient: 0.984; 95% CI: 0.975-0.990). CONCLUSIONS: Large-scale and sustainable monitoring is required urgently to track rapidly spreading drug-resistant malaria. In malaria-endemic areas, where research resources are often limited, simplicity and feasibility of the procedure is especially important. Our approach combines a qPCR-based rapid test, which is also applicable to point-of-care diagnosis of artemisinin resistance and centralized analysis of ex vivo culture. The approach could improve efficiency of field experiments and accelerate global drug resistance surveillance.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Artemisininas/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Humanos , Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Malaria Falciparum/parasitología , Malaria Falciparum/tratamiento farmacológico , Uganda , Polimorfismo de Nucleótido Simple , Pruebas de Sensibilidad Parasitaria/métodos , Monitoreo Epidemiológico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad , Ensayo de Inmunoadsorción Enzimática , Proteínas Protozoarias/genética , Configuración de Recursos Limitados
2.
N Engl J Med ; 385(13): 1163-1171, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34551228

RESUMEN

BACKGROUND: In the six Southeast Asian countries that make up the Greater Mekong Subregion, Plasmodium falciparum has developed resistance to derivatives of artemisinin, the main component of first-line treatments for malaria. Clinical resistance to artemisinin monotherapy in other global regions, including Africa, would be problematic. METHODS: In this longitudinal study conducted in Northern Uganda, we treated patients who had P. falciparum infection with intravenous artesunate (a water-soluble artemisinin derivative) and estimated the parasite clearance half-life. We evaluated ex vivo susceptibility of the parasite using a ring-stage survival assay and genotyped resistance-related genes. RESULTS: From 2017 through 2019, a total of 14 of 240 patients who received intravenous artesunate had evidence of in vivo artemisinin resistance (parasite clearance half-life, >5 hours). Of these 14 patients, 13 were infected with P. falciparum parasites with mutations in the A675V or C469Y allele in the kelch13 gene. Such mutations were associated with prolonged parasite clearance half-lives (geometric mean, 3.95 hours for A675V and 3.30 hours for C469Y, vs. 1.78 hours for wild-type allele; P<0.001 and P = 0.05, respectively). The ring-stage survival assay showed a higher frequency of parasite survival among organisms with the A675V allele than among those with the wild-type allele. The prevalence of parasites with kelch13 mutations increased significantly, from 3.9% in 2015 to 19.8% in 2019, due primarily to the increased frequency of the A675V and C469Y alleles (P<0.001 and P = 0.004, respectively). Single-nucleotide polymorphisms flanking the A675V mutation in Uganda were substantially different from those in Southeast Asia. CONCLUSIONS: The independent emergence and local spread of clinically artemisinin-resistant P. falciparum has been identified in Africa. The two kelch13 mutations may be markers for detection of these resistant parasites. (Funded by the Japan Society for the Promotion of Science and others.).


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Mutación , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Humanos , Estudios Longitudinales , Polimorfismo de Nucleótido Simple , Uganda
3.
Front Cell Infect Microbiol ; 11: 672691, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222045

RESUMEN

Elucidation of the mechanisms of drug resistance in malaria parasites is crucial for combatting the emergence and spread of resistant parasites, which can be achieved by tracing resistance-associated mutations and providing useful information for drug development. Previously, we produced a novel genetic tool, a Plasmodium berghei mutator (PbMut), whose base substitution rate is 36.5 times higher than that of wild-type parasites. Here, we report the isolation of a mutant with reduced susceptibility to piperaquine (PPQ) from PbMut under PPQ pressure by sequential nine-cycle screening and named it PbMut-PPQ-R-P9. The ED50 of PbMut-PPQ-R-P9 was 1.79 times higher than that of wild-type parasites, suggesting that its PPQ resistance is weak. In the 1st screen, recrudescence occurred in the mice infected with PbMut but not in those infected with wild-type parasites, suggesting earlier emergence of PPQ-resistant parasites from PbMut. Whole-genome sequence analysis of PbMut-PPQ-R-P9 clones revealed that eight nonsynonymous mutations were conserved in all clones, including N331I in PbCRT, the gene encoding chloroquine resistance transporter (CRT). The PbCRT(N331I) mutation already existed in the parasite population after the 2nd screen and was predominant in the population after the 8th screen. An artificially inserted PbCRT(N331I) mutation gave rise to reduced PPQ susceptibility in genome-edited parasites (PbCRT-N331I). The PPQ susceptibility and growth rates of PbCRT-N331I parasites were significantly lower than those of PbMut-PPQ-R-P9, implying that additional mutations in the PbMut-PPQ-R9 parasites could compensate for the fitness cost of the PbCRT(N331I) mutation and contribute to reduced PPQ susceptibility. In summary, PbMut could serve as a novel genetic tool for predicting gene mutations responsible for drug resistance. Further study on PbMut-PPQ-R-P9 could identify genetic changes that compensate for fitness costs owing to drug resistance acquisition.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Parásitos , Animales , Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Ratones , Plasmodium berghei/genética , Plasmodium falciparum , Proteínas Protozoarias/genética , Quinolinas , Roedores
4.
Parasitol Int ; 81: 102277, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33370608

RESUMEN

In Uganda, artemether-lumefantrine was introduced as an artemisinin-based combination therapy (ACT) for malaria in 2006. We have previously reported a moderate decrease in ex vivo efficacy of lumefantrine in Northern Uganda, where we also detected ex vivo artemisinin-resistant Plasmodium falciparum. Therefore, it is necessary to search for candidate partner alternatives for ACT. Here, we investigated ex vivo susceptibility to four ACT partner drugs as well as quinine and chloroquine, in 321 cases between 2013 and 2018. Drug-resistant mutations in pfcrt and pfmdr1 were also determined. Ex vivo susceptibility to amodiaquine, quinine, and chloroquine was well preserved, whereas resistance to mefloquine was found in 45.8%. There were few cases of multi-drug resistance. Reduced sensitivity to mefloquine and lumefantrine was significantly associated with the pfcrt K76 wild-type allele, in contrast to the association between chloroquine resistance and the K76T allele. Pfmdr1 duplication was not detected in any of the cases. Amodiaquine, a widely used partner drug for ACT in African countries, may be the first promising alternative in case lumefantrine resistance emerges. Therapeutic use of mefloquine may not be recommended in this area. This study also emphasizes the need for sustained monitoring of antimalarial susceptibility in Northern Uganda to develop proper treatment strategies.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Plasmodium falciparum/efectos de los fármacos , Amodiaquina/farmacología , Artemisininas/farmacología , Cloroquina/farmacología , Lumefantrina/farmacología , Mefloquina/farmacología , Quinina/farmacología , Uganda
5.
PLoS Pathog ; 16(12): e1009133, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320907

RESUMEN

The rapid and aggressive spread of artemisinin-resistant Plasmodium falciparum carrying the C580Y mutation in the kelch13 gene is a growing threat to malaria elimination in Southeast Asia, but there is no evidence of their spread to other regions. We conducted cross-sectional surveys in 2016 and 2017 at two clinics in Wewak, Papua New Guinea (PNG) where we identified three infections caused by C580Y mutants among 239 genotyped clinical samples. One of these mutants exhibited the highest survival rate (6.8%) among all parasites surveyed in ring-stage survival assays (RSA) for artemisinin. Analyses of kelch13 flanking regions, and comparisons of deep sequencing data from 389 clinical samples from PNG, Indonesian Papua and Western Cambodia, suggested an independent origin of the Wewak C580Y mutation, showing that the mutants possess several distinctive genetic features. Identity by descent (IBD) showed that multiple portions of the mutants' genomes share a common origin with parasites found in Indonesian Papua, comprising several mutations within genes previously associated with drug resistance, such as mdr1, ferredoxin, atg18 and pnp. These findings suggest that a P. falciparum lineage circulating on the island of New Guinea has gradually acquired a complex ensemble of variants, including kelch13 C580Y, which have affected the parasites' drug sensitivity. This worrying development reinforces the need for increased surveillance of the evolving parasite populations on the island, to contain the spread of resistance.


Asunto(s)
Antiinfecciosos , Artemisininas , Resistencia a Medicamentos/genética , Genes Protozoarios/genética , Plasmodium falciparum/genética , Antiinfecciosos/uso terapéutico , Artemisininas/uso terapéutico , Estudios Transversales , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Mutación , Papúa Nueva Guinea
6.
Malar J ; 19(1): 76, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32070358

RESUMEN

BACKGROUND: Usage of chloroquine was discontinued from the treatment of Plasmodium falciparum infection in almost all endemic regions because of global spread of resistant parasites. Since the first report in Malawi, numerous epidemiological studies have demonstrated that the discontinuance led to re-emergence of chloroquine-susceptible P. falciparum, suggesting a possible role in future malaria control. However, most studies were cross-sectional, with few studies looking at the persistence of chloroquine recovery in long term. This study fills the gap by providing, for a period of at least 6 years, proof of persistent re-emergence/stable recovery of susceptible parasite populations using both molecular and phenotypic methods. METHODS: Ex vivo drug-susceptibility assays to chloroquine (n = 319) and lumefantrine (n = 335) were performed from 2013 to 2018 in Gulu, Northern Uganda, where chloroquine had been removed from the official malaria treatment regimen since 2006. Genotyping of pfcrt and pfmdr1 was also performed. RESULTS: Chloroquine resistance (≥ 100 nM) was observed in only 3 (1.3%) samples. Average IC50 values for chloroquine were persistently low throughout the study period (17.4-24.9 nM). Parasites harbouring pfcrt K76 alleles showed significantly lower IC50s to chloroquine than the parasites harbouring K76T alleles (21.4 nM vs. 43.1 nM, p-value = 3.9 × 10-8). Prevalence of K76 alleles gradually increased from 71% in 2013 to 100% in 2018. CONCLUSION: This study found evidence of stable persistence of chloroquine susceptibility with the fixation of pfcrt K76 in Northern Uganda after discontinuation of chloroquine in the region. Accumulation of similar evidence in other endemic areas in Uganda could open channels for possible future re-use of chloroquine as an option for malaria treatment or prevention.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Resistencia a Medicamentos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Uganda
7.
Malar J ; 17(1): 434, 2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30477515

RESUMEN

BACKGROUND: Chloroquine treatment for Plasmodium falciparum has been discontinued in almost all endemic regions due to the spread of resistant isolates. Reversal of chloroquine susceptibility after chloroquine discontinuation has been reported in dozens of endemic regions. However, this phenomenon has been mostly observed in Africa and is not well documented in other malaria endemic regions. To investigate this, an ex vivo study on susceptibility to chloroquine and lumefantrine was conducted during 2016-2018 in Wewak, Papua New Guinea where chloroquine had been removed from the official malaria treatment regimen in 2010. Genotyping of pfcrt and pfmdr1 was also performed. RESULTS: In total, 368 patients were enrolled in this study. Average IC50 values for chloroquine were 106.6, 80.5, and 87.6 nM in 2016, 2017, and 2018, respectively. These values were not significantly changed from those obtained in 2002/2003 (108 nM). The majority of parasites harboured a pfcrt K76T the mutation responsible for chloroquine resistance. However, a significant upward trend was observed in the frequency of the K76 (wild) allele from 2.3% in 2016 to 11.7% in 2018 (P = 0.008; Cochran-Armitage trend test). CONCLUSIONS: Eight years of chloroquine withdrawal has not induced a significant recovery of susceptibility in Papua New Guinea. However, an increasing tendency of parasites harbouring chloroquine-susceptible K76 suggests a possibility of resurgence of chloroquine susceptibility in the future.


Asunto(s)
Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Resistencia a Medicamentos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Adolescente , Adulto , Niño , Preescolar , Estudios Transversales , Utilización de Medicamentos , Femenino , Genotipo , Técnicas de Genotipaje , Humanos , Lactante , Recién Nacido , Concentración 50 Inhibidora , Lumefantrina/farmacología , Lumefantrina/uso terapéutico , Malaria Falciparum/parasitología , Masculino , Proteínas de Transporte de Membrana/genética , Persona de Mediana Edad , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Papúa Nueva Guinea , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adulto Joven
8.
Emerg Infect Dis ; 24(4): 718-726, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29553316

RESUMEN

Because ≈90% of malaria cases occur in Africa, emergence of artemisinin-resistant Plasmodium falciparum in Africa poses a serious public health threat. To assess emergence of artemisinin-resistant parasites in Uganda during 2014-2016, we used the recently developed ex vivo ring-stage survival assay, which estimates ring-stage-specific P. falciparum susceptibility to artemisinin. We conducted 4 cross-sectional surveys to assess artemisinin sensitivity in Gulu, Uganda. Among 194 isolates, survival rates (ratio of viable drug-exposed parasites to drug-nonexposed controls) were high (>10%) for 4 isolates. Similar rates have been closely associated with delayed parasite clearance after drug treatment and are considered to be a proxy for the artemisinin-resistant phenotype. Of these, the PfKelch13 mutation was observed in only 1 isolate, A675V. Population genetics analysis suggested that these possibly artemisinin-resistant isolates originated in Africa. Large-scale surveillance of possibly artemisinin-resistant parasites in Africa would provide useful information about treatment outcomes and help regional malaria control.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Preescolar , Estudios Transversales , Femenino , Genotipo , Historia del Siglo XXI , Humanos , Malaria Falciparum/historia , Malaria Falciparum/mortalidad , Masculino , Mutación , Fenotipo , Plasmodium falciparum/genética , Tasa de Supervivencia , Uganda/epidemiología , Secuenciación Completa del Genoma
9.
Malar J ; 16(1): 23, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28068997

RESUMEN

BACKGROUND: Individual drug treatment may select resistant parasites in the human body, a process termed in vivo selection. Some single nucleotide polymorphisms in Plasmodium falciparum chloroquine-resistance transporter (pfcrt) and multidrug resistance gene 1 (pfmdr1) genes have been reportedly selected after artemether-lumefantrine treatment. However, there is a paucity of data regarding in vivo selection of P. falciparum Kelch propeller domain (pfkelch13) polymorphisms, responsible for artemisinin-resistance in Asia, and six putative background mutations for artemisinin resistance; D193Y in ferredoxin, T484I in multiple resistance protein 2, V127M in apicoplast ribosomal protein S10, I356T in pfcrt, V1157L in protein phosphatase and C1484F in phosphoinositide-binding protein. METHODS: Artemether-lumefantrine efficacy study with a follow-up period of 28 days was conducted in northern Uganda in 2014. The above-mentioned genotypes were comparatively analysed before drug administration and on days; 3, 7, and 28 days after treatment. RESULTS: In 61 individuals with successful follow-up, artemether-lumefantrine treatment regimen was very effective with PCR adjusted efficacy of 95.2%. Among 146 isolates obtained before treatment, wild-type alleles were observed in 98.6% of isolates in pfkelch13 and in all isolates in the six putative background genes except I356T in pfcrt, which had 2.4% of isolates as mixed infections. In vivo selection study revealed that all isolates detected in the follow-up period harboured wild type alleles in pfkelch13 and the six background genes. CONCLUSION: Mutations in pfkelch13 and the six background genes may not play an important role in the in vivo selection after artemether-lumefantrine treatment in Uganda. Different mechanisms might rather be associated with the existence of parasites after treatment.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Resistencia a Medicamentos , Etanolaminas/uso terapéutico , Fluorenos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética , Selección Genética , Adolescente , Adulto , Combinación Arteméter y Lumefantrina , Niño , Preescolar , Combinación de Medicamentos , Femenino , Humanos , Lactante , Malaria Falciparum/parasitología , Masculino , Mutación , Plasmodium falciparum/aislamiento & purificación , Polimorfismo Genético , Uganda , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...