Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 324(5): E449-E460, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074989

RESUMEN

G protein-coupled receptor (GPR) 120 is expressed in enteroendocrine cells secreting glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide (GIP), and cholecystokinin (CCK). Although GPR120 signaling in adipose tissue and macrophages has been reported to ameliorate obesity and insulin resistance in a high long-chain triglyceride (LCT) diet, intestine-specific roles of GPR120 are unclear. To clarify the metabolic effect of GPR120 in the intestine, we generated intestine-specific GPR120-knockout (GPR120int-/-) mice. In comparison with floxed GPR120 (WT) mice, GPR120int-/- mice exhibited reduced GIP secretion and CCK action without change of insulin, GLP-1, or peptide YY (PYY) secretion after a single administration of LCT. Under a high-LCT diet, GPR120int-/- mice showed a mild reduction of body weight and substantial amelioration of insulin resistance and fatty liver. Moreover, liver and white adipose tissue (WAT) of GPR120int-/-mice exhibited increased Akt phosphorylation and reduced gene expression of suppressor of cytokine signaling (SOCS) 3, which inhibits insulin signaling. In addition, gene expression of inflammatory cytokines in WAT and lipogenic molecules in liver were reduced in GPR120int-/- mice. These findings suggest that inhibition of GPR120 signaling in intestine ameliorates insulin resistance and fatty liver under high-LCT diet feeding.NEW & NOTEWORTHY We generated novel intestine-specific GPR120-knockout (GPR120int-/-) mice and investigated the metabolic effect of GPR120 in the intestine. GPR120int-/- mice exhibited a reduction of GIP secretion and CCK action after a single administration of LCT. Under a high-LCT diet, GPR120int-/- mice showed mild improvement in obesity and marked amelioration of insulin resistance and hepatic steatosis. Our results indicate an important role of intestinal GPR120 on insulin resistance and hepatic steatosis.


Asunto(s)
Dieta Alta en Grasa , Intestinos , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Ratones , Ratones Endogámicos C57BL , Intestinos/metabolismo , Resistencia a la Insulina , Triglicéridos/administración & dosificación , Hígado Graso/metabolismo , Ratones Noqueados , Glucosa/administración & dosificación , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Obesidad/metabolismo , Aceite de Maíz/administración & dosificación
2.
Sci Rep ; 12(1): 17530, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266531

RESUMEN

Tissue optical clearing permits detailed evaluation of organ three-dimensional (3-D) structure as well as that of individual cells by tissue staining and autofluorescence. In this study, we evaluated intestinal morphology, intestinal epithelial cells (IECs), and enteroendocrine cells, such as incretin-producing cells, in reporter mice by intestinal 3-D imaging. 3-D intestinal imaging of reporter mice using optical tissue clearing enabled us to evaluate both detailed intestinal morphologies and cell numbers, villus length and crypt depth in the same samples. In disease mouse model of lipopolysaccharide (LPS)-injected mice, the results of 3-D imaging using tissue optical clearing in this study was consistent with those of 2-D imaging in previous reports and could added the new data of intestinal morphology. In analysis of incretin-producing cells of reporter mice, we could elucidate the number, the percentage, and the localization of incretin-producing cells in intestine and the difference of those between L cells and K cells. Thus, we established a novel method of intestinal analysis using tissue optical clearing and 3-D imaging. 3-D evaluation of intestine enabled us to clarify not only detailed intestinal morphology but also the precise number and localization of IECs and incretin-producing cells in the same samples.


Asunto(s)
Incretinas , Lipopolisacáridos , Ratones , Animales , Imagenología Tridimensional/métodos , Intestinos , Mucosa Intestinal/diagnóstico por imagen , Imagen Óptica/métodos
3.
Front Endocrinol (Lausanne) ; 13: 921125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909510

RESUMEN

Pancreatic ß-cell mass (BCM) has an importance in the pathophysiology of diabetes mellitus. Recently, glucagon-like peptide-1 receptor (GLP-1R)-targeted imaging has emerged as a promising tool for BCM evaluation. While glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide (GIP) is known to be involved in high-fat diet (HFD)-induced obesity, the effect of GIP on BCM is still controversial. In this study, we investigated indium 111 (111In)-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4) single-photon emission computed tomography/computed tomography (SPECT/CT) as a tool for evaluation of longitudinal BCM changes in HFD-induced obese mice, at the same time we also investigated the effects of GIP on BCM in response to HFD using GIP-knockout (GIP-/-) mice. 111In-exendin-4 SPECT/CT was able to distinguish control-fat diet (CFD)-fed mice from HFD-fed mice and the pancreatic uptake values replicated the BCM measured by conventional histological methods. Furthermore, BCM expansions in HFD-fed mice were demonstrated by time-course changes of the pancreatic uptake values. Additionally, 111In-exendin-4 SPECT/CT demonstrated the distinct changes in BCM between HFD-fed GIP-/- (GIP-/-+HFD) and wild-type (WT+HFD) mice; the pancreatic uptake values of GIP-/-+HFD mice became significantly lower than those of WT+HFD mice. The different changes in the pancreatic uptake values between the two groups preceded those in fat accumulation and insulin resistance. Taken together with the finding of increased ß-cell apoptosis in GIP-/-+HFD mice compared with WT+HFD mice, these data indicated that GIP has preferable effects on BCM under HFD. Therefore, 111In-exendin-4 SPECT/CT can be useful for evaluating increasing BCM and the role of GIP in BCM changes under HFD conditions.


Asunto(s)
Polipéptido Inhibidor Gástrico , Células Secretoras de Insulina , Animales , Dieta Alta en Grasa/efectos adversos , Exenatida/farmacología , Polipéptido Inhibidor Gástrico/farmacología , Receptor del Péptido 1 Similar al Glucagón , Ratones
4.
iScience ; 24(9): 102963, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34466786

RESUMEN

Long-chain triglycerides (LCTs) intake strongly stimulates GIP secretion from enteroendocrine K cells and induces obesity and insulin resistance partly due to GIP hypersecretion. In this study, we found that medium-chain triglycerides (MCTs) inhibit GIP secretion after single LCT ingestion and clarified the mechanism underlying MCT-induced inhibition of GIP secretion. MCTs reduced the CCK effect after single LCT ingestion in wild-type (WT) mice, and a CCK agonist completely reversed MCT-induced inhibition of GIP secretion. In vitro studies showed that medium-chain fatty acids (MCFAs) inhibit long-chain fatty acid (LCFA)-stimulated CCK secretion and increase in intracellular Ca2+ concentrations through inhibition of GPR120 signaling. Long-term administration of MCTs reduced obesity and insulin resistance in high-LCT diet-fed WT mice, but not in high-LCT diet-fed GIP-knockout mice. Thus, MCT-induced inhibition of GIP hypersecretion reduces obesity and insulin resistance under high-LCT diet feeding condition.

5.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G617-G626, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33533304

RESUMEN

Glucagon-like peptide-1 (GLP-1) is an incretin secreted from enteroendocrine preproglucagon (PPG)-expressing cells (traditionally known as L cells) in response to luminal nutrients that potentiates insulin secretion. Augmentation of endogenous GLP-1 secretion might well represent a novel therapeutic target for diabetes treatment in addition to the incretin-associated drugs currently in use. In this study, we found that PPG cells substantially express carbonic anhydrase 8 (CAR8), which has been reported to inhibit inositol 1,4,5-trisphosphate (IP3) binding to the IP3 receptor and subsequent Ca2+ efflux from the endoplasmic reticulum in neuronal cells. In vitro experiments using STC-1 cells demonstrated that Car8 knockdown increases long-chain fatty acid (LCFA)-stimulated GLP-1 secretion. This effect was reduced in the presence of phospholipase C (PLC) inhibitor; in addition, Car8 knockdown increased the intracellular Ca2+ elevation caused by α-linolenic acid, indicating that CAR8 exerts its effect on GLP-1 secretion via the PLC/IP3/Ca2+ pathway. Car8wdl null mutant mice showed significant increase in GLP-1 response to oral corn oil administration compared with that in wild-type littermates, with no significant change in intestinal GLP-1 content. These results demonstrate that CAR8 negatively regulates GLP-1 secretion from PPG cells in response to LCFAs, suggesting the possibility of augmentation of postprandial GLP-1 secretion by CAR8 inhibition.NEW & NOTEWORTHY This study focused on the physiological significance of carbonic anhydrase 8 (CAR8) in GLP-1 secretion from enteroendocrine preproglucagon (PPG)-expressing cells. We found an inhibitory role of CAR8 in LCFA-induced GLP-1 secretion in vitro and in vivo, suggesting a novel therapeutic approach to diabetes and obesity through augmentation of postprandial GLP-1 secretion by CAR8 inhibition.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Aceite de Maíz/farmacología , Células Enteroendocrinas/efectos de los fármacos , Ácidos Grasos/farmacología , Péptido 1 Similar al Glucagón/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Biomarcadores de Tumor/genética , Señalización del Calcio , Línea Celular , Células Enteroendocrinas/enzimología , Glucagón/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Vías Secretoras , Fosfolipasas de Tipo C/metabolismo
6.
J Mol Endocrinol ; 66(1): 11-22, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33151898

RESUMEN

Cholecystokinin (CCK) is secreted from enteroendocrine I cells in response to fat, carbohydrate, and protein ingestion. Gene expression of nutrient-sensing molecules in I cells remains unclear, primarily due to the difficulty in distinguishing I cells from intestinal epithelial cells in vivo. In this study, we generated CCK reporter male mice in which the red fluorescence protein tdTomato (Tomato) is produced by activation of the native murine Cck promoter. Fluorescence microscopy revealed the presence of Tomato-positive cells in upper small intestine (SI), lower SI, and colon. Flow cytometer analysis revealed that Tomato-positive cells among epithelial cells of upper SI, lower SI, and colon occurred at the rate of 0.95, 0.54, and 0.06%, respectively. In upper SI and lower SI, expression levels of Cck mRNA were higher in Tomato-positive cells than those in Tomato-negative cells. The fatty acid receptors Gpr120, Gpr40, and Gpr43 and the oleoylethanolamide receptor Gpr119 were highly expressed in Tomato-positive cells isolated from SI, but were not found in Tomato-positive cells from colon. The glucose and fructose transporters Sglt1, Glut2, and Glut5 were expressed in both Tomato-positive cells and -negative cells, but these expression levels tended to be decreased in Tomato-positive cells from upper SI to colon. The peptide transporter Pept1 and receptor Gpr93 were expressed in both Tomato-positive cells and -negative cells, whereas Casr was expressed only in Tomato-positive cells isolated from SI. Thus, this transgenic mouse reveals that I cell number and gene expression in I cells vary according to region in the gastrointestinal tract.


Asunto(s)
Colecistoquinina/biosíntesis , Células Enteroendocrinas/metabolismo , Expresión Génica , Genes Reporteros , Nutrientes/metabolismo , Animales , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Masculino , Ratones , Ratones Transgénicos , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...