Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Nat Commun ; 13(1): 6571, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323680

RESUMEN

Astrocytes are one of the most abundant cell types in the mammalian brain. They play essential roles in synapse formation, maturation, and elimination. However, how astrocytes migrate into the gray matter to accomplish these processes is poorly understood. Here, we show that, by combinational analyses of in vitro and in vivo time-lapse observations and lineage traces, astrocyte progenitors move rapidly and irregularly within the developing cortex, which we call erratic migration. Astrocyte progenitors also adopt blood vessel-guided migration. These highly motile progenitors are generated in the restricted prenatal stages and differentiate into protoplasmic astrocytes in the gray matter, whereas postnatally generated progenitors do not move extensively and differentiate into fibrous astrocytes in the white matter. We found Cxcr4/7, and integrin ß1 regulate the blood vessel-guided migration, and their functional blocking disrupts their positioning. This study provides insight into astrocyte development and may contribute to understanding the pathogenesis caused by their defects.


Asunto(s)
Astrocitos , Corteza Cerebral , Animales , Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Encéfalo/metabolismo , Integrina beta1/metabolismo , Transducción de Señal , Mamíferos/metabolismo
2.
J Neurochem ; 163(6): 461-477, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36156798

RESUMEN

The nodes of Ranvier are unmyelinated gaps in the axon, important for the efficient transmission of action potentials. Despite the identification of several glycoproteins involved in node formation and maintenance, glycans' structure and formation in the node remain unclear. Previously, we developed a recombinant lectin from the Clostridium botulinum neurotoxin complex, specific to the galactose and N-acetylgalactosamine terminal epitopes (Gg). Gg stained Neuro2a cells. Here, we show Gg punctuate staining in mouse brain cryosections. Thus, we hypothesized that Gg could help study glycans in the node of Ranvier. Lectin histochemistry on mouse brain cryosections confirmed that Gg binds specifically to the node of Ranvier in the central nervous system (CNS). Using a combination of lectin blotting, glycosidase treatment on tissue sections, and lectin histochemistry, Gg ligands were identified as α-galactose terminal glycoproteins in the perinodal extracellular matrix. Furthermore, we detected the spatiotemporal distribution of galactosylated glycans in the CNS node of Ranvier in mouse brain tissues at different postnatal times. Finally, we observed impaired clustering of galactosylated glycans in the nodes during demyelination and remyelination in cuprizone-induced demyelination and remyelination mouse model. In conclusion, Gg can serve as a novel brain imaging tool in glycobiology and report glycoprotein formation and alterations in the CNS node of Ranvier. Our findings might serve as a first step to establish the role of glycans in the node of Ranvier.


Asunto(s)
Enfermedades Desmielinizantes , Lectinas , Nódulos de Ranvier , Animales , Ratones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Sistema Nervioso Central/diagnóstico por imagen , Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes/metabolismo , Galactosa/metabolismo , Glicoproteínas/metabolismo , Lectinas/química , Neuroimagen , Polisacáridos/química , Polisacáridos/metabolismo , Nódulos de Ranvier/metabolismo
3.
Neurochem Res ; 47(9): 2793-2804, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35753011

RESUMEN

α1,3-Fucosyltransferase 9 (Fut9) is responsible for the synthesis of Lewis X [LeX, Galß1-4(Fucα1-3)GlcNAc] carbohydrate epitope, a marker for pluripotent or multipotent tissue-specific stem cells. Although Fut9-deficient mice show anxiety-related behaviors, structural and cellular abnormalities in the brain remain to be investigated. In this study, using in situ hybridization and immunohistochemical techniques in combination, we clarified the spatiotemporal expression of Fut9, together with LeX, in the brain and retina. We found that Fut9-expressing cells are positive for Ctip2, a marker of neurons residing in layer V/VI, and TLE4, a marker of corticothalamic projection neurons (CThPNs) in layer VI, of the cortex. A birthdating analysis using 5-ethynyl-2'-deoxyuridine at embryonic day (E)11.5, 5-bromo-2'-deoxyuridine at E12.5, and in utero electroporation of a GFP expression plasmid at E14.5 revealed a reduction in the percentage of neurons produced at E11.5 in layer VI/subplate of the cortex and in the ganglion cell layer of the retina in P0 Fut9-/- mice. Furthermore, this reduction in layer VI/subplate neurons persisted into adulthood, leading to a reduction in the number of Ctip2strong/Satb2- excitatory neurons in layer V/VI of the adult Fut9-/- cortex. These results suggest that Fut9 plays significant roles in the differentiation, migration, and maturation of neural precursor cells in the cortex and retina.


Asunto(s)
Antígeno Lewis X , Células-Madre Neurales , Animales , Corteza Cerebral/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Retina/metabolismo
5.
J Neurochem ; 157(6): 2070-2090, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32947653

RESUMEN

Remyelination plays an important role in determining the fate of demyelinating disorders. However, it is arrested during chronic disease states. Cystatin F, a papain-like lysosomal cysteine proteinase inhibitor, is a crucial regulator of demyelination and remyelination. Using hemizygous proteolipid protein transgenic 4e (PLP4e/- ) mice, an animal model of chronic demyelination, we found that cystatin F mRNA expression was induced at 2.5 months of age and up-regulated in the early phase of demyelination, but significantly decreased in the chronic phase. We next investigated cystatin F regulatory factors as potential mechanisms of remyelination arrest in chronic demyelinating disorders. We used the CysF-STOP-tetO::Iba-mtTA mouse model, in which cystatin F gene expression is driven by the tetracycline operator. Interestingly, we found that forced cystatin F mRNA over-expression was eventually decreased. Our findings show that cystatin F expression is modulated post-transcriptionally. We next identified embryonic lethal, abnormal vision, drosophila like RNA-binding protein 1 (ELAVL-1), and miR29a as cystatin F mRNA stabilizing and destabilizing factors, respectively. These roles were confirmed in vitro in NIH3T3 cells. Using postmortem plaque samples from human multiple sclerosis patients, we also confirmed that ELAVL-1 expression was highly correlated with the previously reported expression pattern of cystatin F. These data indicate the important roles of ELAVL-1 and miR29a in regulating cystatin F expression. Furthermore, they provide new insights into potential therapeutic targets for demyelinating disorders.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Cistatinas/genética , Cistatinas/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , Remielinización/fisiología , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Persona de Mediana Edad , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Células 3T3 NIH
6.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255418

RESUMEN

Detection of early-stage hepatocellular carcinoma (HCC) is beneficial for prolonging patient survival. However, the serum markers currently used show limited ability to identify early-stage HCC. In this study, we explored human serum N-glycans as sensitive markers to diagnose HCC in patients with cirrhosis. Using a simplified fluorescence-labeled N-glycan preparation method, we examined non-sialylated and sialylated N-glycan profiles from 71 healthy controls and 111 patients with hepatitis and/or liver cirrhosis (LC) with or without HCC. We found that the level of serum N-glycan A2G1(6)FB, a biantennary N-glycan containing core fucose and bisecting GlcNAc residues, was significantly higher in hepatitis C virus (HCV)-infected cirrhotic patients with HCC than in those without HCC. In addition, A2G1(6)FB was detectable in HCV-infected patients with early-stage HCC and could be a more accurate marker than alpha-fetoprotein (AFP) or protein induced by vitamin K absence or antagonists-II (PIVKA-II). Moreover, there was no apparent correlation between the levels of A2G1(6)FB and those of AFP or PIVKA-II. Thus, simultaneous use of A2G1(6)FB and traditional biomarkers could improve the accuracy of HCC diagnosis in HCV-infected patients with LC, suggesting that A2G1(6)FB may be a reliable biomarker for early-stage HCC patients.


Asunto(s)
Carcinoma Hepatocelular/sangre , Cirrosis Hepática/sangre , Neoplasias Hepáticas/sangre , Polisacáridos/sangre , Adulto , Anciano , Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Detección Precoz del Cáncer , Femenino , Hepacivirus/patogenicidad , Hepatitis C Crónica/sangre , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/patología , Hepatitis C Crónica/virología , Humanos , Cirrosis Hepática/complicaciones , Cirrosis Hepática/patología , Cirrosis Hepática/virología , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Masculino , Persona de Mediana Edad , alfa-Fetoproteínas/metabolismo
7.
Mol Brain ; 13(1): 159, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228720

RESUMEN

Paranodal axoglial junctions are essential for rapid nerve conduction and the organization of axonal domains in myelinated axons. Neurofascin155 (Nfasc155) is a glial cell adhesion molecule that is also required for the assembly of these domains. Previous studies have demonstrated that general ablation of Nfasc155 disorganizes these domains, reduces conduction velocity, and disrupts motor behaviors. Multiple sclerosis (MS), a typical disorder of demyelination in the central nervous system, is reported to have autoantibody to Nfasc. However, the impact of focal loss of Nfasc155, which may occur in MS patients, remains unclear. Here, we examined whether restricted focal loss of Nfasc155 affects the electrophysiological properties of the motor system in vivo. Adeno-associated virus type5 (AAV5) harboring EGFP-2A-Cre was injected into the glial-enriched internal capsule of floxed-Neurofascin (NfascFlox/Flox) mice to focally disrupt paranodal junctions in the cortico-fugal fibers from the motor cortex to the spinal cord. Electromyograms (EMGs) of the triceps brachii muscles in response to electrical stimulation of the motor cortex were successively examined in these awake mice. EMG analysis showed significant delay in the onset and peak latencies after AAV injection compared to control (Nfasc+/+) mice. Moreover, EMG half-widths were increased, and EMG amplitudes were gradually decreased by 13 weeks. Similar EMG changes have been reported in MS patients. These findings provide physiological evidence that motor outputs are obstructed by focal ablation of paranodal junctions in myelinated axons. Our findings may open a new path toward development of a novel biomarker for an early phase of human MS, as Nfasc155 detects microstructural changes in the paranodal junction.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Corteza Cerebral/metabolismo , Cápsula Interna/metabolismo , Músculos/fisiología , Factores de Crecimiento Nervioso/metabolismo , Animales , Dependovirus/metabolismo , Electromiografía , Integrasas/metabolismo , Ratones
8.
Cereb Cortex ; 30(12): 6415-6425, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32766673

RESUMEN

The origin and life-long fate of quiescent neural stem cells (NSCs) in the adult mammalian brain remain largely unknown. A few neural precursor cells in the embryonic brain elongate their cell cycle time and subsequently become quiescent postnatally, suggesting the possibility that life-long NSCs are selected at an early embryonic stage. Here, we utilized a GFP-expressing lentivirus to investigate the fate of progeny from individual lentivirus-infected NSCs by identifying the lentiviral integration site. Our data suggest that NSCs become specified to two or more lineages prior to embryonic day 13.5 in mice: one NSC lineage produces cells only for the cortex and another provides neurons to the olfactory bulb. The majority of neurosphere-forming NSCs in the adult brain are relatively dormant and generate very few cells, if any, in the olfactory bulb or cortex, and this NSC population could serve as a reservoir that is occasionally reactivated later in life.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Linaje de la Célula , Células-Madre Neurales/fisiología , Animales , Vectores Genéticos , Lentivirus/fisiología , Ratones Transgénicos
9.
Front Neurosci ; 14: 22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32063832

RESUMEN

Early life stress can exert detrimental or beneficial effects on neural development and postnatal behavior depending on the timing, duration, strength, and ability to control the stressors. In this study, we utilized a maternal and social deprivation (MSD) model to investigate the effects of early life stress on neural stem cells (NSCs) and neurogenesis in the adult brain. We found that MSD during the stress-hyporesponsive period (SHRP) (early-MSD), when corticosterone secretion is suppressed, increased the size of the NSC population, whereas the same stress beyond the SHRP abrogated these effects. Early-MSD enhanced neurogenesis not only in the dentate gyrus of the hippocampus, one of the classic neurogenic regions, but also in the amygdala. In addition, mice exposed to early-MSD exhibited a reduction in amygdala/hippocampus-dependent fear memory. These results suggest that animals exposed to early life stress during the SHRP have reinforced stress resilience to cope with perceived stressors to maintain a normal homeostatic state.

10.
Glia ; 68(1): 193-210, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31465122

RESUMEN

Myelination increases the conduction velocity in long-range axons and is prerequisite for many brain functions. Impaired myelin regulation or impairment of myelin itself is frequently associated with deficits in learning and cognition in neurological and psychiatric disorders. However, it has not been revealed what perturbation of neural activity induced by myelin impairment causes learning deficits. Here, we measured neural activity in the motor cortex during motor learning in transgenic mice with a subtle impairment of their myelin. This deficit in myelin impaired motor learning, and was accompanied by a decrease in the amplitude of movement-related activity and an increase in the frequency of spontaneous activity. Thalamocortical axons showed variability in axonal conduction with a large spread in the timing of postsynaptic cortical responses. Repetitive pairing of forelimb movements with optogenetic stimulation of thalamocortical axon terminals restored motor learning. Thus, myelin regulation helps to maintain the synchrony of cortical spike-time arrivals through long-range axons, facilitating the propagation of the information required for learning. Our results revealed the pathological neuronal circuit activity with impaired myelin and suggest the possibility that pairing of noninvasive brain stimulation with relevant behaviors may ameliorate cognitive and behavioral abnormalities in diseases with impaired myelination.


Asunto(s)
Potenciales de Acción/fisiología , Aprendizaje/fisiología , Corteza Motora/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Neuronas/metabolismo , Desempeño Psicomotor/fisiología , Animales , Masculino , Ratones , Ratones Transgénicos , Corteza Motora/química , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/química , Neuronas/química , Optogenética/métodos
11.
Adv Exp Med Biol ; 1190: 145-163, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31760643

RESUMEN

Mitochondria play essential roles in neurons and abnormal functions of mitochondria have been implicated in neurological disorders including myelin diseases. Since mitochondrial functions are regulated and maintained by their dynamic behavior involving localization, transport, and fusion/fission, modulation of mitochondrial dynamics would be involved in physiology and pathology of myelinated axons. In fact, the integration of multimodal imaging in vivo and in vitro revealed that mitochondrial localization and transport are differentially regulated in nodal and internodal regions in response to the changes of metabolic demand in myelinated axons. In addition, the mitochondrial behavior in axons is modulated as adaptive responses to demyelination irrespective of the cause of myelin loss, and the behavioral modulation is partly through interactions with cytoskeletons and closely associated with the pathophysiology of demyelinating diseases. Furthermore, the behavior and functions of axonal mitochondria are modulated in congenital myelin disorders involving impaired interactions between axons and myelin-forming cells, and, together with the inflammatory environment, implicated in axonal degeneration and disease phenotypes. Further studies on the regulatory mechanisms of the mitochondrial dynamics in myelinated axons would provide deeper insights into axo-glial interactions mediated through myelin ensheathment, and effective manipulations of the dynamics may lead to novel therapeutic strategies protecting axonal and neuronal functions and survival in primary diseases of myelin.


Asunto(s)
Axones/fisiología , Enfermedades Desmielinizantes/fisiopatología , Dinámicas Mitocondriales , Vaina de Mielina/fisiología , Axones/patología , Humanos , Vaina de Mielina/patología , Neuronas/patología , Neuronas/fisiología
12.
BMC Cancer ; 19(1): 910, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31510952

RESUMEN

BACKGROUND: Oligosaccharides of glycoprotein, particularly negatively-charged sialylated N-glycans, on the surface of lymphomas play important roles in cell-cell interactions and bind immunoglobulin-like lectins, causing inflammatory responses and bioregulation. However, their characterizations have largely been unknown in central nervous system (CNS) lymphoma. METHODS: Here, we investigated expression patterns of N-linked oligosaccharides of glycoproteins in cells derived from CNS lymphomas and clinical specimens. RESULTS: We first generated methotrexate (MTX)-resistant cells derived from HKBML and TK as CNS lymphoma, and RAJI as non-CNS lymphoma and determined N-linked oligosaccharide structures in these cells and other non-CNS lymphoma-derived cells including A4/FUK, OYB, and HBL1. Major components of the total oligosaccharides were high-mannose type N-glycans, whose level increased in MTX-resistant HKBML and TK but decreased in MTX-resistant RAJI. We also detected sialylated biantennary galactosylated N-glycans with α1,6-fucosylation, A2G2F, and A2G2FB from HKBML, TK, and RAJI. Sialylated A4G4F was specifically isolated from RAJI. However, the ratios of these sialylated N-glycans slightly decreased against MTX-resistant compared to non-resistant cells. Interestingly, almost all complex-type oligosaccharides were α2,6-sialylated. DISCUSSION: This is the first study for the expression profile of N-oligosaccharides on MTX-resistant primary CNS lymphoma-derived cells HKBML and TK, and tumor tissues resected from patients with CNS lymphoma, CONCLUSION: These results propose a possibility that the differential expression of high-mannose types and sialylated A2G2F, A2G2FB, and A4G4F on the surface of CNS lymphomas may provide a hint for targets for diagnoses and treatments of the oligosaccharide type-specific lymphomas.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Neoplasias del Sistema Nervioso Central/genética , Regulación Neoplásica de la Expresión Génica , Linfoma no Hodgkin/genética , Metotrexato/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Glicoproteínas , Humanos , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/metabolismo , Linfoma no Hodgkin/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
J Neurosci ; 39(21): 4036-4050, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30862665

RESUMEN

The axonal conduction of action potentials affects the absolute time it takes to transmit nerve impulses as well as temporal summation at destination synapses. At the physiological level, oligodendrocyte depolarization facilitates axonal conduction along myelinated fibers in the hippocampus; however, the functional significance of this facilitation is largely unknown. In this study, we examined the physiology of the facilitation of axonal conduction by investigating the changes in synaptic responses at destination synapses using male and female mice in which channelrhodopsin-2 expression was restricted to oligodendrocytes. The subiculum, one of the projection areas of the examined axons at the alveus of the hippocampus, is divided into three regions (proximal, mid, and distal) and contains two types of principal neurons: regular firing and bursting pyramidal cells. We found a significant increase in excitatory synaptic responses following optogenetic oligodendrocyte depolarization in bursting neurons at two of the three regions, but not in regular firing neurons at any region. The long-term potentiation (LTP) induced by theta burst stimulation at the synapses showing a significant increase was also enhanced after oligodendrocyte depolarization. Conversely, the reduction of oligodendrocyte depolarization during theta burst stimulation, which was achieved by photostimulation of archaerhodopsin-T expressed selectively on oligodendrocytes, reduced the magnitude of LTP. These results show that oligodendrocyte depolarization contributes to the fine control of synaptic activity between the axons they myelinate and targets subicular cells in a region- and cell type-specific manner, and suggest that oligodendrocyte depolarization during conditioning of stimuli is involved in the induction of LTP.SIGNIFICANCE STATEMENT All activity in the nervous system depends on the propagation of action potentials. Changes in the axonal conduction of action potentials influence the timing of synaptic transmission and information processing in neural circuits. At the physiological level, oligodendrocyte depolarization facilitates axonal conduction along myelinated fibers. In this study, we investigated the functional significance of the facilitation of axonal conduction induced by physiological oligodendrocyte depolarization. Using optogenetics and electrophysiological recordings, we demonstrated that oligodendrocyte depolarization in mice expressing channelrhodopsin-2 on oligodendrocytes increased excitatory synaptic responses and enhanced the induction of long-term potentiation at destination synapses in a region- and cell type-specific manner. This facilitation may have a hitherto unappreciated influence on the transfer of information between regions in the nervous system.


Asunto(s)
Potenciales de Acción/fisiología , Potenciación a Largo Plazo/fisiología , Oligodendroglía/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Femenino , Hipocampo/fisiología , Masculino , Ratones , Ratones Transgénicos
14.
J Neuroinflammation ; 16(1): 10, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651105

RESUMEN

BACKGROUND: Microglia-derived lysosomal cathepsins are important inflammatory mediators to trigger signaling pathways in inflammation-related cascades. Our previous study showed that the expression of cathepsin C (CatC) in the brain is induced predominantly in activated microglia in neuroinflammation. Moreover, CatC can induce chemokine production in brain inflammatory processes. In vitro studies further confirmed that CatC is secreted extracellularly from LPS-treated microglia. However, the mechanisms of CatC affecting neuroinflammatory responses are not known yet. METHODS: CatC over-expression (CatCOE) and knock-down (CatCKD) mice were treated with intraperitoneal and intracerebroventricular LPS injection. Morris water maze (MWM) test was used to assess the ability of learning and memory. Cytokine expression in vivo was detected by in situ hybridization, quantitative PCR, and ELISA. In vitro, microglia M1 polarization was determined by quantitative PCR. Intracellular Ca2+ concentration was determined by flow cytometry, and the expression of NR2B, PKC, p38, IkBα, and p65 was determined by western blotting. RESULTS: The LPS-treated CatCOE mice exhibited significantly increased escape latency compared with similarly treated wild-type or CatCKD mice. The highest levels of TNF-α, IL-1ß, and other M1 markers (IL-6, CD86, CD16, and CD32) were found in the brain or serum of LPS-treated CatCOE mice, and the lowest levels were detected in CatCKD mice. Similar results were found in LPS-treated microglia derived from CatC differentially expressing mice or in CatC-treated microglia from wild-type mice. Furthermore, the expression of NR2B mRNA, phosphorylation of NR2B, Ca2+ concentration, phosphorylation of PKC, p38, IκBα, and p65 were all increased in CatC-treated microglia, while addition of E-64 and MK-801 reversed the phosphorylation of above molecules. CONCLUSION: The data suggest that CatC promotes microglia M1 polarization and aggravates neuroinflammation via activation of Ca2+-dependent PKC/p38MAPK/NF-κB pathway. CatC may be one of key molecular targets for alleviating and controlling neuroinflammation in neurological diseases.


Asunto(s)
Calcio/metabolismo , Catepsina C/metabolismo , Polaridad Celular/fisiología , Encefalitis/patología , Microglía/fisiología , FN-kappa B/metabolismo , Agregación Patológica de Proteínas/etiología , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Catepsina C/genética , Polaridad Celular/efectos de los fármacos , Polaridad Celular/genética , Células Cultivadas , Encefalitis/inducido químicamente , Encefalitis/fisiopatología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Femenino , Regulación de la Expresión Génica/genética , Discapacidades para el Aprendizaje/etiología , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , FN-kappa B/genética , Agregación Patológica de Proteínas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
15.
Neurosci Res ; 139: 48-57, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30179642

RESUMEN

Myelin is a multilamellar cell membrane around axons and is essential for fast saltatory conduction and maintenance of axonal integrity and survival. Congenital and acquired abnormalities of myelin lead to neurological disorders involving degeneration and loss of axons and neurons, which are implicated in permanent neurological deficits and progressive neurological decline. As in other neurological disorders, neural degeneration and loss in myelin diseases are associated with multiple factors including aberrant inflammatory responses, oxidative stresses, and impaired axonal metabolism involving cationic sequestration and energy production. Metabolic regulation depends on mitochondrial function, and impaired mitochondrial dynamics cause degeneration and loss of axons and neurons. Future studies on the regulatory mechanisms of axonal and neuronal degeneration in myelin diseases, which include further development of animal models and better screening approaches for possible interventions, contribute to deeper understanding of axonal interactions with glia and myelin ensheathment and potentially lead to novel therapeutic strategies to protect the function and survival of axons and neurons in myelin diseases.


Asunto(s)
Axones/metabolismo , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Animales , Humanos , Esclerosis Múltiple/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología
16.
J Neurochem ; 148(3): 413-425, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30152001

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease characterized by immune-mediated inflammation, which attacks the myelin sheath. MS pursues a relapsing and remitting course with varying intervals between symptoms. The main clinical pathological features include inflammation, myelin sheath destruction and plaque formation in the central nervous system (CNS). We previously reported that cystatin F (CysF) expression is induced in demyelinating lesions that are accompanied by active remyelination (referred to as shadow plaques) but is down-regulated in chronic demyelinated lesions (plaques) in the spinal cord of MS patients and in several murine models of demyelinating disease. CysF is a cathepsin protease inhibitor whose major target is cathepsin C (CatC), which is co-expressed in demyelinating regions in Plp4e/- mice, a model of chronic demyelination. Here, we report the time course of CatC and CysF expression and describe the symptoms in a mouse experimental autoimmune encephalomyelitis (EAE) model using CatC knockdown (KD) and CatC over-expression (OE) mice. In myelin oligodendrocyte glycoprotein (MOG)-EAE, CatC positive cells were found to infiltrate the CNS at an early stage prior to any clinical signs, in comparison to WT mice. CysF expression was not observed at this early stage, but appeared later within shadow plaques. CatC expression was found in chronic demyelinated lesions but was not associated with CysF expression, and CatCKD EAE mouse showed delayed demyelination. Whereas, CatCOE in microglia significantly increased severity of demyelination in the MOG-EAE model. Thus, these results demonstrate that CatC plays a major role in MOG-EAE.


Asunto(s)
Encéfalo/metabolismo , Catepsina C/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Degeneración Nerviosa/metabolismo , Médula Espinal/metabolismo , Animales , Encéfalo/patología , Cistatinas/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/inmunología , Degeneración Nerviosa/patología , Médula Espinal/patología
17.
Med Mol Morphol ; 52(3): 135-146, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30448927

RESUMEN

Demyelination leads to axonal changes that involve the functions and dynamics of axonal mitochondria supporting metabolism and survival of axons. However, the changes in the physical interactions between mitochondria and endoplasmic reticulum, called mitochondria-associated membranes, are poorly understood in demyelinated axons. In this study, we investigated the three-dimensional ultrastructural changes in membrane juxtapositions between mitochondria and endoplasmic reticulum in axons of a chronic progressive demyelination mouse model caused by extra copies of proteolipid protein (PLP4e). In the optic nerve of PLP4e mice, most axons were ensheathed by myelin by age 1 month, but were demyelinated by age 5 months. At age 1 month, mitochondria in PLP4e mice were slightly larger than those in wild-type mice, while the size and frequency of juxtaposition were similar. At age 5 months, the sizes of mitochondria and size of juxtaposition in PLP4e mice were prominently larger than those in wild-type mice. In degenerating axons under demyelination, the enlargement of mitochondria was diminished, while the density and frequency of juxtaposition were similar to those of non-degenerating axons. These results suggest that interactions between mitochondria and ER are enhanced in chronically demyelinated axons and maintained during axonal degeneration in hereditary myelin diseases.


Asunto(s)
Axones/patología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Retículo Endoplásmico/fisiología , Mitocondrias/patología , Animales , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/fisiología
18.
J Cereb Blood Flow Metab ; 39(11): 2144-2156, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30334687

RESUMEN

Extracellular ATP, which is released from damaged cells after ischemia, activates P2 receptors. P2Y1 receptors (P2Y1R) have received considerable attention, especially in astrocytes, because their activation plays a central role in the regulation of neuron-to-glia communication. However, the functions or even existence of P2Y1R in microglia remain unknown, despite the fact that many microglial P2 receptors are involved in several brain diseases. Herein, we demonstrate the presence and functional capability of microglial P2Y1R to provide neuroprotective effects following ischemic stress. Cerebral ischemia resulted in increased microglial P2Y1R expression. The number of injured hippocampal neurons was significantly higher in P2Y1 R knockout (KO) mice than wildtype mice after forebrain ischemia. Propidium iodide (PI) uptake, a marker for dying cells, was significantly higher in P2Y1R KO hippocampal slices compared with wildtype hippocampal slices at 48 h after 40-min oxygen-glucose deprivation (OGD). Furthermore, increased PI uptake following OGD was rescued by ectopic overexpression of P2Y1R in microglia. In summary, these data suggest that microglial P2Y1R mediate neuroprotective effects against ischemic stress and OGD insult.


Asunto(s)
Microglía/química , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Receptores Purinérgicos P2Y1/fisiología , Animales , Isquemia Encefálica , Muerte Celular/efectos de los fármacos , Glucosa/deficiencia , Hipocampo/metabolismo , Hipocampo/patología , Hipoxia , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Receptores Purinérgicos P2Y1/análisis
19.
J Neurochem ; 150(2): 158-172, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30589943

RESUMEN

Oligodendrocytes (OLs) are myelinating cells of the central nervous system. Recent studies have shown that mechanical factors influence various cell properties. Mechanical stimulation can be transduced into intracellular biochemical signals through mechanosensors, such as integrin, p130Cas, talin and vinculin. However, the molecular mechanisms underlying the mechanical regulation of OLs by mechanosensors remain largely unknown. We found that morphology of OL was affected by knockdown of the mechanosensors p130Cas or talin1. Stretching of OL precursor cells induced the phosphorylation of p130Cas and talin-associated assembly of vinculin. Shear stress decreased the number of OL processes, whereas these effects were mechanically suppressed by dominant-negative (DN) p130Cas, but not by DN-talin1. To investigate the roles of p130Cas in post-natal OLs in vivo, we constructed a novel p130Cas knock-in mouse and found overexpression of p130Cas in vivo affected the number of mature OLs in the cortex. These results indicate that the mechanosensor p130Cas controls both OL morphogenesis and maturation.


Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Animales , Diferenciación Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Técnicas de Sustitución del Gen , Mecanotransducción Celular/fisiología , Ratones , Ratones Endogámicos C57BL , Estrés Mecánico
20.
Glia ; 66(11): 2514-2525, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30240035

RESUMEN

Oligodendrocytes myelinate neuronal axons to increase conduction velocity in the vertebrate central nervous system (CNS). Recent studies revealed that myelin formed on highly active axons is more stable compared to activity-silenced axons, and length of the myelin sheath is longer in active axons as well in the zebrafish larva. However, it is unclear whether oligodendrocytes preferentially myelinate active axons compared to sensory input-deprived axons in the adult mammalian CNS. It is also unknown if a single oligodendrocyte forms both longer myelin sheaths on active axons and shorter sheaths on input-deprived axons after long-term sensory deprivation. To address these questions, we applied simultaneous labeling of both neuronal axons and oligodendrocytes to mouse models of long-term monocular eyelid suturing and unilateral whisker removal. We found that individual oligodendrocytes evenly myelinated normal and input-deprived axons in the adult mouse CNS, and myelin sheath length on normal axons and input-deprived axons formed by a single oligodendrocyte were comparable. Importantly, the average length of the myelin sheath formed by individual oligodendrocytes did change depending on relative abundance of normal against sensory-input deprived axons, indicating an abundance of deprived axons near an oligodendrocyte impacts on myelination program by a single oligodendrocyte.


Asunto(s)
Sistema Nervioso Central/citología , Regulación de la Expresión Génica/fisiología , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Quiasma Óptico/metabolismo , Privación Sensorial/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Cuerpo Calloso/metabolismo , Ojo/inervación , Femenino , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción Genética , Vibrisas/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA