Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Mol Morphol ; 52(4): 198-208, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30805710

RESUMEN

Cancer cells surviving in ascites exhibit cancer stem cell (CSC)-like features. This study analyzed the expression of the CSC marker CD133 in the ascites-derived exosomes obtained from patients with unresectable pancreatic cancer. In addition, inverse correlation of CD133 expression with prognosis was examined. Of the 133 consecutive patients, 19 patients were enrolled in the study. Exosomes derived from the malignant ascites demonstrated higher density and wider variation in size than those from non-malignant ascites. Western blot revealed enhanced expression of CD133 in exosomes obtained from patients with pancreatic cancer compared to those obtained from patients with gastric cancer or liver cirrhosis. A xenograft mouse model with malignant ascites was established by intraperitoneal inoculation of human pancreatic cancer cells in nude mice. Results obtained from the human study were reproduced in the mouse model. Statistically significant equilateral correlation was identified between the band intensity of CD133 in western blot and overall survival of patients. Lectin microarray analyses revealed glycosylation of CD133 by sialic acids as the major glycosylation among diverse others responsible for the glycosylation of exosomal CD133. These findings suggest that highly glycosylated CD133 in ascites-derived exosomes as a potential biomarker for better prognosis of patients with advanced pancreatic cancer.


Asunto(s)
Antígeno AC133/metabolismo , Ascitis/metabolismo , Biomarcadores de Tumor/metabolismo , Exosomas/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Línea Celular Tumoral , Glicosilación , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células PC-3 , Pronóstico , Neoplasias Gástricas/metabolismo
2.
Cancer Sci ; 109(9): 2801-2810, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29981246

RESUMEN

CD44v9 is expressed in cancer stem cells (CSC) and stabilizes the glutamate-cystine transporter xCT on the cytoplasmic membrane, thereby decreasing intracellular levels of reactive oxygen species (ROS). This mechanism confers ROS resistance to CSC and CD44v9-expressing cancer cells. The aims of the present study were to assess: (i) expression status of CD44v9 and xCT in hepatocellular carcinoma (HCC) tissues, including those derived from patients treated with hepatic arterial infusion chemoembolization (HAIC) therapy with cisplatin (CDDP); and (ii) whether combination of CDDP with sulfasalazine (SASP), an inhibitor of xCT, was more effective on tumor cells than CDDP alone by inducing ROS-mediated apoptosis. Twenty non-pretreated HCC tissues and 7 HCC tissues administered HAIC therapy with CDDP before surgical resection were subjected to immunohistochemistry analysis of CD44v9 and xCT expression. Human HCC cell lines HAK-1A and HAK-1B were used in this study; the latter was also used for xenograft experiments in nude mice to assess in vivo efficacy of combination treatment. CD44v9 positivity was significantly higher in HAIC-treated tissues (5/7) than in non-pretreated tissues (2/30), suggesting the involvement of CD44v9 in the resistance to HAIC. xCT was significantly expressed in poorly differentiated HCC tissues. Combination treatment effectively killed the CD44v9-harboring HAK-1B cells through ROS-mediated apoptosis and significantly decreased xenografted tumor growth. In conclusion, the xCT inhibitor SASP augmented ROS-mediated apoptosis in CDDP-treated HCC cells, in which the CD44v9-xCT system functioned. As CD44v9 is typically expressed in HAIC-resistant HCC cells, combination treatment with SASP with CDDP may overcome such drug resistance.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/fisiología , Carcinoma Hepatocelular/tratamiento farmacológico , Receptores de Hialuranos/fisiología , Neoplasias Hepáticas/tratamiento farmacológico , Sulfasalazina/farmacología , Anciano , Anciano de 80 o más Años , Sistema de Transporte de Aminoácidos y+/análisis , Animales , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/química , Cisplatino/farmacología , Resistencia a Antineoplásicos , Femenino , Células Hep G2 , Humanos , Receptores de Hialuranos/análisis , Neoplasias Hepáticas/química , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo
3.
World J Gastroenterol ; 23(37): 6833-6844, 2017 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-29085226

RESUMEN

AIM: To elucidate the role of STAT3 in hepatocarcinogenesis and biliary ductular proliferation following chronic liver injury. METHODS: We investigated thioacetamide (TAA)-induced liver injury, compensatory hepatocyte proliferation, and hepatocellular carcinoma (HCC) development in hepatic STAT3-deficient mice. In addition, we evaluated TAA-induced biliary ductular proliferation and analyzed the activation of sex determining region Y-box9 (SOX9) and Yes-associated protein (YAP), which regulate the transdifferentiation of hepatocytes to cholangiocytes. RESULTS: Both compensatory hepatocyte proliferation and HCC formation were significantly decreased in hepatic STAT3-deficient mice as compared with control mice. STAT3 deficiency resulted in augmentation of hepatic necrosis and fibrosis. On the other hand, biliary ductular proliferation increased in hepatic STAT3-deficient livers as compared with control livers. SOX9 and YAP were upregulated in hepatic STAT3-deficient hepatocytes. CONCLUSION: STAT3 may regulate hepatocyte proliferation as well as transdifferentiation into cholangiocytes and serve as a therapeutic target for HCC inhibition and biliary regeneration.


Asunto(s)
Sistema Biliar/fisiología , Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Neoplasias Hepáticas Experimentales/patología , Neoplasias Hepáticas/patología , Regeneración , Factor de Transcripción STAT3/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sistema Biliar/citología , Carcinoma Hepatocelular/inducido químicamente , Proteínas de Ciclo Celular , Proliferación Celular , Transdiferenciación Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hepatocitos/fisiología , Hígado/efectos de los fármacos , Hígado/patología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas Experimentales/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfoproteínas/metabolismo , Fosforilación , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción STAT3/genética , Tioacetamida/toxicidad , Regulación hacia Arriba , Proteínas Señalizadoras YAP
4.
Dig Dis Sci ; 62(6): 1527-1536, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28365916

RESUMEN

BACKGROUND AND AIMS: Pigment epithelium-derived factor (PEDF) has been shown to be a potent inhibitor of inflammation through its anti-oxidative property. Since oxidative response is considered to play the pivotal role of the development and progression of nonalcoholic steatohepatitis (NASH), it is conceivable that PEDF may play a protective role against NASH. In this study, we examined whether administration of PEDF slowed the progression of NASH in mice models. METHODS: Mice were fed methionine- and choline-deficient (MCD) diet with or without intramuscular administration of adenovirus-expressing PEDF (Ad-PEDF). Effects of PEDF administration on NASH were histologically and biochemically evaluated. RESULTS: Administration of Ad-PEDF significantly decreased hepatic fat storage as well as serum levels of ALT in MCD diet-fed mice. Dihydroethidium staining showed that MCD diet-triggered oxidative stress was reduced in the liver of Ad-PEDF-administered mice compared to that of PBS- or Ad-LacZ-administered mice. Activation of Kupffer cells and hepatic fibrosis was also inhibited by Ad-PEDF administration. Quantitative real-time RT-PCR revealed that MCD diet up-regulated expressions of TNF-α, IL-1ß, IL-6, TGF-ß, collagen-1, and collagen-3 mRNA, which were also attenuated with Ad-PEDF administration, whereas MCD diet-induced down-regulation of expressions of PPAR-γ mRNA was restored with Ad-PEDF administration. Furthermore, immunoblotting analysis showed that MCD diet-induced up-regulation of NADPH oxidase components was significantly decreased in Ad-PEDF-administered mice. CONCLUSIONS: The present results demonstrated for the first time that PEDF could slow the development and progression of steatohepatitis through the suppression of steatosis and inflammatory response in MCD diet-fed mice. Our study suggests that PEDF supplementation may be a novel therapeutic strategy for the treatment of NASH.


Asunto(s)
Tejido Adiposo/patología , Proteínas del Ojo/farmacología , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Factores de Crecimiento Nervioso/farmacología , Inhibidores de Proteasas/farmacología , ARN Mensajero/metabolismo , Serpinas/farmacología , Adenoviridae/genética , Alanina Transaminasa/sangre , Animales , Deficiencia de Colina/complicaciones , Colágeno Tipo I/genética , Colágeno Tipo III/genética , Dieta , Modelos Animales de Enfermedad , Regulación hacia Abajo , Proteínas del Ojo/genética , Hígado Graso/genética , Hígado Graso/patología , Inyecciones Intramusculares , Interleucina-1beta/genética , Interleucina-6/genética , Macrófagos del Hígado , Cirrosis Hepática/prevención & control , Masculino , Metionina/administración & dosificación , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/metabolismo , Factores de Crecimiento Nervioso/genética , Estrés Oxidativo , PPAR gamma/genética , Serpinas/genética , Factor de Necrosis Tumoral alfa/genética , Regulación hacia Arriba
5.
Mol Cancer Res ; 15(6): 744-752, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28179411

RESUMEN

Doublecortin-like kinase 1 (DCLK1), a marker for intestinal and pancreatic cancer stem cells, is highly expressed in neuroblastomas. This study was conducted to assess DCLK1 expression levels in pancreatic neuroendocrine tumor (PNET) tissues and to explore the roles of this molecule in clinical tissue from multiple PNET patients, cells (BON1, QGP1, and CM) and tumor xenografts. Immunohistochemically, all PNET tissues highly and diffusely expressed DCLK1 as a full-length isoform, identical to that detected in primary liver NETs. A DCLK1-overexpressing PNET cell line (QGP1-DCLK1) exhibited epithelial-mesenchymal transition (EMT)-related gene signatures, and robust upregulation of Slug (SNAI2), N-Cadherin (CDH2), and Vimentin (VIM) was validated by real-time PCR and immunoblotting. QGP1-DCLK1 cells had increased cell migration in a wound-healing assay and formed significantly larger xenograft tumors in nude mice. The factors involved in the formation of the fast-growing tumors included p-FAK (on Tyr925), p-ERK1/2, p-AKT, Paxillin, and Cyclin D1, which upon knockdown or pharmacologic inhibition of DCLK1 abolished the expression of these molecules. In conclusion, robust and ubiquitous expression of DCLK1 was first demonstrated here in human PNET tissue specimens and cells. DCLK1 characterized the PNET cell behavior, inducing p-FAK/SLUG-mediated EMT. These findings suggest the possibility of developing novel therapeutic strategies against PNETs by targeting DCLK1.Implications: Evidence here reveals that human PNETs diffusely and robustly express the cancer stem cell marker DCLK1, which drives SLUG-mediated EMT, and suggests that NETs share biological features for druggable targets with other tumors, including neuroblastoma that also highly expresses DCLK1. Mol Cancer Res; 15(6); 744-52. ©2017 AACR.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Quinasas Similares a Doblecortina , Femenino , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Tumores Neuroendocrinos/genética , Neoplasias Pancreáticas/genética , Tirosina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Neoplasia ; 18(7): 413-24, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27435924

RESUMEN

BACKGROUND & AIM: Aflibercept known as ziv-aflibercept in the United States is a soluble decoy receptor of both vascular endothelial growth factor (VEGF) receptor-1 and -2 known to inhibit the binding of VEGF and placental growth factor (PlGF) to VEGF receptor-1 and -2. Here, we analyzed the mechanisms of the antitumor effects of aflibercept in mouse hepatoma models. METHODS: In in vitro studies, we determined the effects of aflibercept on human umbilical vein cell (HUVEC) proliferation and bone marrow (BM) cell differentiation to endothelial progenitor cells (EPCs). In in vivo experiments, aflibercept was injected intraperitoneally in hepatoma cell tumor-bearing mice, and its inhibitory effects on tumor growth and BM cell migration to tumor tissues were evaluated. RESULTS: Aflibercept suppressed phosphorylation of VEGF receptor-1 and -2 in HUVEC and dose-dependently inhibited VEGF-induced HUVEC proliferation. It suppressed the differentiation of BM cells to EPCs and migration of BM cells to tumor tissues. It also suppressed tumor growth and prolonged survival time of tumor-bearing mice without side effects. In tumor tissues, aflibercept upregulated the expression of hypoxia inducible factor1-α, VEGF, PlGF, fibroblast growth factor-2, platelet derived growth factor-BB, and transforming growth factor-α and reduced microvascular density. It also reduced sinusoidal density in noncancerous liver tissues. CONCLUSIONS: Our results demonstrated potent antitumor activity for aflibercept in a mouse model of hepatocellular carcinoma. These effects were mediated through inhibition of neovascularization, caused by inhibition of endothelial cell proliferation, EPC differentiation, and BM cell migration to tumor tissues.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Proteínas Recombinantes de Fusión/farmacología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Células de la Médula Ósea/citología , Carcinoma Hepatocelular/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/citología , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Receptores de Factores de Crecimiento Endotelial Vascular
8.
Mol Ther Methods Clin Dev ; 3: 16025, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27162932

RESUMEN

Ex vivo expansion of autologous cells is indispensable for cell transplantation therapy of patients with liver cirrhosis. The aim of this study was to investigate the efficacy of human ex vivo-expanded CD34(+) cells for treatment of cirrhotic rat liver. Recipient rats were intraperitoneally injected with CCl4 twice weekly for 3 weeks before administration of CD34(+) cells. CCl4 was then re-administered twice weekly for 3 more weeks, and the rats were sacrificed. Saline, nonexpanded or expanded CD34(+) cells were injected via the spleen. After 7 days, CD34(+) cells were effectively expanded in a serum-free culture medium. Expanded CD34(+) cells were also increasingly positive for cell surface markers of VE-cadherin, VEGF receptor-2, and Tie-2. The expression of proangiogenic growth factors and adhesion molecules in expanded CD34(+) cells increased compared with nonexpanded CD34(+) cells. Expanded CD34(+) cell transplantation reduced liver fibrosis, with a decrease of αSMA(+) cells. Assessments of hepatocyte and sinusoidal endothelial cell proliferative activity indicated the superior potency of expanded CD34(+) cells over non-expanded CD34(+) cells. The inhibition of integrin αvß3 and αvß5 disturbed the engraftment of transplanted CD34(+) cells and aggravated liver fibrosis. These findings suggest that expanded CD34(+) cells enhanced the preventive efficacy of cell transplantation in a cirrhotic model.

9.
Mol Ther Oncolytics ; 2: 15020, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27119112

RESUMEN

"Angiogenic switch off" is one of the ideal therapeutic concepts in the treatment of cancer. However, the specific molecules which can induce "angiogenic switch off" in tumor have not been identified yet. In this study, we focused on von Hippel-Lindau protein (pVHL) in hepatocellular carcinoma (HCC) and investigated the effects of sulfoquinovosyl-acylpropanediol (SQAP), a novel synthetic sulfoglycolipid, for HCC. We examined mutation ratio of VHL gene in HCC using 30 HCC samples and we treated the HCC-implanted mice with SQAP. Thirty clinical samples showed no VHL genetic mutation in HCC. SQAP significantly inhibited tumor growth by inhibiting angiogenesis in a hepatoma mouse model. SQAP induced tumor "angiogenic switch off" by decreasing hypoxia-inducible factor (HIF)-1, 2α protein via pVHL upregulation. pVHL upregulation decreased HIFα protein levels through different multiple mechanisms: (i) increasing pVHL-dependent HIFα protein degradation; (ii) decreasing HIFα synthesis with decrease of NF-κB expression; and (iii) decrease of tumor hypoxia by vascular normalization. We confirmed these antitumor effects of SQAP by the loss-of-function experiments. We found that SQAP directly bound to and inhibited transglutaminase 2. This study provides evidence that upregulation of tumor pVHL is a promising target, which can induce "angiogenic switch off" in HCC.

10.
J Gastroenterol Hepatol ; 29(10): 1830-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24731186

RESUMEN

BACKGROUND AND AIM: Preclinical studies in rodent models of chronic liver fibrosis have shown that transplantation of peripheral blood (PB) CD34(+) cells leads to hepatic regeneration and a reduction of liver fibrosis by suppressing hepatic stellate cell activity and increasing matrix metalloproteinase activity. The aim of this study was to examine the safety and clinical efficacy of intrahepatic transplantation of autologous granulocyte colony-stimulating factor (G-CSF)-mobilized PB-CD34(+) cells in patients with decompensated liver cirrhosis. METHODS: PB-CD34(+) cells were isolated from G-CSF-mobilized apheresis products. Ten patients were treated with G-CSF-mobilized PB-CD34(+) cells (treatment group) and seven patients were treated with standard medical therapy. For mobilization, patients in the treatment group received subcutaneous injections of 10 µg G-CSF/kg/day for 5 days. The cells were then injected at three different doses (5 × 10(5) , 1 × 10(6) and 2 × 10(6) cells/kg) through the hepatic artery. Thereafter, all patients were followed up for 24 months. RESULTS: G-CSF treatment and leukapheresis were well tolerated, and no serious adverse events were observed. Patients in the treatment group had a significant but transient splenomegaly. After 24 weeks, serum albumin was significantly increased in patients who had received middle or high doses of CD34(+) cells compared with baseline. Doppler ultrasound showed a significant increase in hepatic blood flow velocity and blood flow volume after CD34(+) cell therapy. The hepatic vein pressure gradient decreased in two patients who received high-dose CD34(+) cells at week 16. CONCLUSIONS: CD34(+) cell therapy is feasible, safe and effective in slowing the decline of hepatic reserve function.


Asunto(s)
Antígenos CD34 , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Cirrosis Hepática/terapia , Trasplante de Células Madre de Sangre Periférica/métodos , Anciano , Autoinjertos , Estudios de Factibilidad , Femenino , Estudios de Seguimiento , Factor Estimulante de Colonias de Granulocitos/farmacología , Arteria Hepática , Células Estrelladas Hepáticas/parasitología , Venas Hepáticas/fisiopatología , Humanos , Inyecciones Subcutáneas , Circulación Hepática , Cirrosis Hepática/enzimología , Cirrosis Hepática/patología , Cirrosis Hepática/fisiopatología , Regeneración Hepática , Masculino , Metaloproteinasas de la Matriz/metabolismo , Persona de Mediana Edad , Estudios Prospectivos , Terapéutica , Factores de Tiempo , Presión Venosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA