Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicology ; 32(9): 1174-1186, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37971643

RESUMEN

The toxicity of chemical substances to algal growth is generally measured by the 72-96 h algal growth inhibition test. We have developed a method to assess the toxicity of chemicals in aquatic environments more quickly and simply than conventional testing methods by delayed fluorescence (DF), which reflects the photosynthetic capacity of algae. The DF method is based on a technique for evaluating the amount of change in the decay curve due to the effects of chemicals ([Formula: see text], DF inhibition). Various studies on DF have been reported; however, few reports have evaluated the decay curve of DF by approach using inductive modeling based on measurement data such as principal component analysis (PCA) and partial least squares regression analysis (PLS). Therefore, the purpose of this study is to examine methods for estimating the magnitude and type of toxicity of chemicals by means of a principal component model (PC model) and multiple regression model (MR model) derived from changes in the decay curves of DF of algae exposed to a wide range of 37 toxic substances that have an effect of clear magnitude on algal growth. The changes in the DF decay curves due to exposure the 37 toxic substances to algae were summarized in the PC model composed of eigenvectors and scores of four principal components. For validation of usefulness, a hierarchical cluster analysis (HCA) of the amount of change in four PC scores revealed that the growth inhibition rate was more influential than the chemical type. We also found the possibility of quantitatively predicting the growth inhibition of chemicals by MR model by the amount of change in the PC scores.


Asunto(s)
Chlorophyceae , Contaminantes Químicos del Agua , Fluorescencia , Fotosíntesis , Contaminantes Químicos del Agua/toxicidad
2.
Sci Total Environ ; 605-606: 842-851, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28683428

RESUMEN

Algal growth inhibition tests are generally used to determine the toxic effects of chemical substances on algae growth. In this report, we describe a rapid and simple test procedure using delayed fluorescence (DF) to determine chemical toxicities more rapidly than the conventional 72h or 96h growth inhibition tests. We assess the suitability of DF to serve as an alternative endpoint for biomass production and determine the variability by an interlaboratory ring study using a typical reference toxicant 3,5-dichlorophenol (DCP). The results suggest that DF has the potential to be used as a surrogate measure of photosynthetically-active biomass in the algal growth inhibition tests. The half maximal effective concentration (EC50) values of DCP determined from the DF inhibition test in 6h and 24h (1.2±0.3mg/L and 2.7±0.5mg/L respectively) are in reasonable agreement with the EC50 value of DCP determined by the 72h conventional method (1.8mg/L). In the interlaboratory ring study, the intralaboratory and interlaboratory variabilities of the EC50 of the DF inhibition test for a 24h exposure period are 12% and 28% respectively. DF intensity can be considered as a surrogate of living biomass with active photosynthesis, and we conclude that a 24h exposure duration better estimates the toxic effects measured using conventional surrogate measures for dry weight such as cell counts, volume, optical density or fluorescence.


Asunto(s)
Bioensayo , Chlorophyta/efectos de los fármacos , Fluorescencia , Contaminantes Químicos del Agua/toxicidad , Biomasa , Chlorophyta/crecimiento & desarrollo , Fotosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA