Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (207)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829118

RESUMEN

Developing objective and quantitative methods of early gross motor assessment is essential to better understand neurodevelopment and to support early therapeutic interventions. Here, we present a method to quantify gross motor performance using a multisensor wearable, MAIJU (Motility Assessment of Infants with a JUmpsuit), which offers an automated, scalable, quantitative, and objective assessment using a fully automated cloud-based pipeline. This wearable suit is equipped with four movement sensors that record synchronized data to a mobile phone utilizing a low-energy Bluetooth connection. An offline analysis in the cloud server generates fully analyzed results within minutes for each recording. These results include a graphical report of the recording session and a detailed result matrix that gives second-by-second classifications for posture, movement, infant carrying, and free playtime. Our recent results show the virtue of such quantified motor assessment providing a potentially effective method for distinguishing variations in the infant's gross motor development.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Lactante , Destreza Motora/fisiología , Desarrollo Infantil/fisiología
2.
EBioMedicine ; 92: 104591, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37137181

RESUMEN

BACKGROUND: Early neurodevelopmental care and research are in urgent need of practical methods for quantitative assessment of early motor development. Here, performance of a wearable system in early motor assessment was validated and compared to developmental tracking of physical growth charts. METHODS: Altogether 1358 h of spontaneous movement during 226 recording sessions in 116 infants (age 4-19 months) were analysed using a multisensor wearable system. A deep learning-based automatic pipeline quantified categories of infants' postures and movements at a time scale of seconds. Results from an archived cohort (dataset 1, N = 55 infants) recorded under partial supervision were compared to a validation cohort (dataset 2, N = 61) recorded at infants' homes by the parents. Aggregated recording-level measures including developmental age prediction (DAP) were used for comparison between cohorts. The motor growth was also compared with respective DAP estimates based on physical growth data (length, weight, and head circumference) obtained from a large cohort (N = 17,838 infants; age 4-18 months). FINDINGS: Age-specific distributions of posture and movement categories were highly similar between infant cohorts. The DAP scores correlated tightly with age, explaining 97-99% (94-99% CI 95) of the variance at the group average level, and 80-82% (72-88%) of the variance in the individual recordings. Both the average motor and the physical growth measures showed a very strong fit to their respective developmental models (R2 = 0.99). However, single measurements showed more modality-dependent variation that was lowest for motor (σ = 1.4 [1.3-1.5 CI 95] months), length (σ = 1.5 months), and combined physical (σ = 1.5 months) measurements, and it was clearly higher for the weight (σ = 1.9 months) and head circumference (σ = 1.9 months) measurements. Longitudinal tracking showed clear individual trajectories, and its accuracy was comparable between motor and physical measures with longer measurement intervals. INTERPRETATION: A quantified, transparent and explainable assessment of infants' motor performance is possible with a fully automated analysis pipeline, and the results replicate across independent cohorts from out-of-hospital recordings. A holistic assessment of motor development provides an accuracy that is comparable with the conventional physical growth measures. A quantitative measure of infants' motor development may directly support individual diagnostics and care, as well as facilitate clinical research as an outcome measure in early intervention trials. FUNDING: This work was supported by the Finnish Academy (314602, 335788, 335872, 332017, 343498), Finnish Pediatric Foundation (Lastentautiensäätiö), Aivosäätiö, Sigrid Jusélius Foundation, and HUS Children's Hospital/HUS diagnostic center research funds.


Asunto(s)
Desarrollo Infantil , Dispositivos Electrónicos Vestibles , Lactante , Humanos , Niño , Gráficos de Crecimiento , Postura
3.
Sensors (Basel) ; 22(20)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36298219

RESUMEN

Long-term EEG monitoring in neonatal intensive care units (NICU) is challenged with finding solutions for setting up and maintaining a sufficient recording quality with limited technical experience. The current study evaluates different solutions for the skin-electrode interface and develops a disposable EEG cap for newborn infants. Several alternative materials for the skin-electrode interface were compared to the conventional gel and paste: conductive textiles (textured and woven), conductive Velcro, sponge, super absorbent hydrogel (SAH), and hydro fiber sheets (HF). The comparisons included the assessment of dehydration and recordings of signal quality (skin interphase impedance and powerline (50 Hz) noise) for selected materials. The test recordings were performed using snap electrodes integrated into a forearm sleeve or a forehead band along with skin-electrode interfaces to mimic an EEG cap with the aim of long-term biosignal recording on unprepared skin. In the hydration test, conductive textiles and Velcro performed poorly. While the SAH and HF remained sufficiently hydrated for over 24 h in an incubator-mimicking environment, the sponge material was dehydrated during the first 12 h. Additionally, the SAH was found to have a fragile structure and was electrically prone to artifacts after 12 h. In the electrical impedance and recording comparisons of muscle activity, the results for thick-layer HF were comparable to the conventional gel on unprepared skin. Moreover, the mechanical instability measured by 1-2 Hz and 1-20 Hz normalized relative power spectrum density was comparable with clinical EEG recordings using subdermal electrodes. The results together suggest that thick-layer HF at the skin-electrode interface is an effective candidate for a preparation-free, long-term recording, with many advantages, such as long-lasting recording quality, easy use, and compatibility with sensitive infant skin contact.


Asunto(s)
Electroencefalografía , Unidades de Cuidado Intensivo Neonatal , Lactante , Recién Nacido , Humanos , Electroencefalografía/métodos , Electrodos , Artefactos , Impedancia Eléctrica , Hidrogeles
4.
Commun Med (Lond) ; 2: 69, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721830

RESUMEN

Background: Early neurodevelopmental care needs better, effective and objective solutions for assessing infants' motor abilities. Novel wearable technology opens possibilities for characterizing spontaneous movement behavior. This work seeks to construct and validate a generalizable, scalable, and effective method to measure infants' spontaneous motor abilities across all motor milestones from lying supine to fluent walking. Methods: A multi-sensor infant wearable was constructed, and 59 infants (age 5-19 months) were recorded during their spontaneous play. A novel gross motor description scheme was used for human visual classification of postures and movements at a second-level time resolution. A deep learning -based classifier was then trained to mimic human annotations, and aggregated recording-level outputs were used to provide posture- and movement-specific developmental trajectories, which enabled more holistic assessments of motor maturity. Results: Recordings were technically successful in all infants, and the algorithmic analysis showed human-equivalent-level accuracy in quantifying the observed postures and movements. The aggregated recordings were used to train an algorithm for predicting a novel neurodevelopmental measure, Baba Infant Motor Score (BIMS). This index estimates maturity of infants' motor abilities, and it correlates very strongly (Pearson's r = 0.89, p < 1e-20) to the chronological age of the infant. Conclusions: The results show that out-of-hospital assessment of infants' motor ability is possible using a multi-sensor wearable. The algorithmic analysis provides metrics of motility that are transparent, objective, intuitively interpretable, and they link strongly to infants' age. Such a solution could be automated and scaled to a global extent, holding promise for functional benchmarking in individualized patient care or early intervention trials.

5.
Clin Neurophysiol ; 132(11): 2840-2850, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34592561

RESUMEN

OBJECTIVE: To develop methods for recording and analysing infant's proximal muscle activations. METHODS: Surface electromyography (sEMG) of truncal muscles was recorded in three months old infants (N = 18) during spontaneous movement and controlled postural changes. The infants were also divided into two groups according to motor performance. We developed an efficient method for removing dynamic cardiac artefacts to allow i) accurate estimation of individual muscle activations, as well as ii) quantitative characterization of muscle networks. RESULTS: The automated removal of cardiac artefacts allowed quantitation of truncal muscle activity, which showed predictable effects during postural changes, and there were differences between high and low performing infants.The muscle networks showed consistent change in network density during spontaneous movements between supine and prone position. Moreover, activity correlations in individual pairs of back muscles linked to infant́s motor performance. CONCLUSIONS: The hereby developed sEMG analysis methodology is feasible and may disclose differences between high and low performing infants. Analysis of the muscle networks may provide novel insight to central control of motility. SIGNIFICANCE: Quantitative analysis of infant's muscle activity and muscle networks holds promise for an objective neurodevelopmental assessment of motor system.


Asunto(s)
Desarrollo Infantil/fisiología , Electromiografía/métodos , Movimiento/fisiología , Músculo Esquelético/crecimiento & desarrollo , Postura/fisiología , Femenino , Humanos , Lactante , Masculino
6.
Acta Paediatr ; 110(10): 2766-2771, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34146357

RESUMEN

AIM: To describe and test the accuracy of respiratory rate assessment in long-term surveillance using an open-source infant wearable, NAPping PAnts (NAPPA). METHODS: We recorded 24 infants aged 1-9 months using our newly developed infant wearable that is a diaper cover with an integrated programmable electronics with accelerometer and gyroscope sensors. The sensor collects child's respiration rate (RR), activity and body posture in 30-s epochs, to be downloaded afterwards into a mobile phone application. An automated RR quality measure was also implemented using autocorrelation function, and the accuracy of RR estimate was compared with a reference obtained from the simultaneously recorded capnography signal that was part of polysomnography recordings. RESULTS: Altogether 88 h 27 min of data were recorded, and 4147 epochs (39% of all data) were accepted after quality detection. The median of patient wise mean absolute errors in RR estimates was 1.5 breaths per minute (interquartile range 1.1-2.6 bpm), and the Blandt-Altman analysis indicated an RR bias of 0.0 bpm with the 95% limits of agreement of -5.7-5.7 bpm. CONCLUSION: Long-term monitoring of RR and posture can be done with reasonable accuracy in out-of-hospital settings using NAPPA, an openly available infant wearable.


Asunto(s)
Frecuencia Respiratoria , Dispositivos Electrónicos Vestibles , Humanos , Lactante , Polisomnografía , Respiración , Sueño
7.
Sci Rep ; 10(1): 169, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31932616

RESUMEN

Infants' spontaneous and voluntary movements mirror developmental integrity of brain networks since they require coordinated activation of multiple sites in the central nervous system. Accordingly, early detection of infants with atypical motor development holds promise for recognizing those infants who are at risk for a wide range of neurodevelopmental disorders (e.g., cerebral palsy, autism spectrum disorders). Previously, novel wearable technology has shown promise for offering efficient, scalable and automated methods for movement assessment in adults. Here, we describe the development of an infant wearable, a multi-sensor smart jumpsuit that allows mobile accelerometer and gyroscope data collection during movements. Using this suit, we first recorded play sessions of 22 typically developing infants of approximately 7 months of age. These data were manually annotated for infant posture and movement based on video recordings of the sessions, and using a novel annotation scheme specifically designed to assess the overall movement pattern of infants in the given age group. A machine learning algorithm, based on deep convolutional neural networks (CNNs) was then trained for automatic detection of posture and movement classes using the data and annotations. Our experiments show that the setup can be used for quantitative tracking of infant movement activities with a human equivalent accuracy, i.e., it meets the human inter-rater agreement levels in infant posture and movement classification. We also quantify the ambiguity of human observers in analyzing infant movements, and propose a method for utilizing this uncertainty for performance improvements in training of the automated classifier. Comparison of different sensor configurations also shows that four-limb recording leads to the best performance in posture and movement classification.


Asunto(s)
Algoritmos , Cinestesia/fisiología , Monitoreo Ambulatorio/instrumentación , Movimiento/fisiología , Postura/fisiología , Dispositivos Electrónicos Vestibles/estadística & datos numéricos , Automatización , Femenino , Humanos , Lactante , Masculino , Redes Neurales de la Computación , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...