Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4283, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769318

RESUMEN

The genome of Pseudomonas aeruginosa encodes three type VI secretion systems, each comprising a dozen distinct proteins, which deliver toxins upon T6SS sheath contraction. The least conserved T6SS component, TssA, has variations in size which influence domain organisation and structure. Here we show that the TssA Nt1 domain interacts directly with the sheath in a specific manner, while the C-terminus is essential for oligomerisation. We built chimeric TssA proteins by swapping C-termini and showed that these can be functional even when made of domains from different TssA sub-groups. Functional specificity requires the Nt1 domain, while the origin of the C-terminal domain is more permissive for T6SS function. We identify two regions in short TssA proteins, loop and hairpin, that contribute to sheath binding. We propose a docking mechanism of TssA proteins with the sheath, and a model for how sheath assembly is coordinated by TssA proteins from this position.


Asunto(s)
Proteínas Bacterianas , Dominios Proteicos , Pseudomonas aeruginosa , Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/química , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
2.
Nat Commun ; 14(1): 8339, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097584

RESUMEN

Genome duplication is essential for the proliferation of cellular life and this process is generally initiated by dedicated replication proteins at chromosome origins. In bacteria, DNA replication is initiated by the ubiquitous DnaA protein, which assembles into an oligomeric complex at the chromosome origin (oriC) that engages both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) to promote DNA duplex opening. However, the mechanism of DnaA specifically opening a replication origin was unknown. Here we show that Bacillus subtilis DnaAATP assembles into a continuous oligomer at the site of DNA melting, extending from a dsDNA anchor to engage a single DNA strand. Within this complex, two nucleobases of each ssDNA binding motif (DnaA-trio) are captured within a dinucleotide binding pocket created by adjacent DnaA proteins. These results provide a molecular basis for DnaA specifically engaging the conserved sequence elements within the bacterial chromosome origin basal unwinding system (BUS).


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Bacterianas/metabolismo , Origen de Réplica , Bacterias/genética , ADN , ADN de Cadena Simple/genética , ADN Bacteriano/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo
3.
Nucleic Acids Res ; 51(9): 4322-4340, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37093985

RESUMEN

Genome replication is a fundamental biological activity shared by all organisms. Chromosomal replication proceeds bidirectionally from origins, requiring the loading of two helicases, one for each replisome. However, the molecular mechanisms underpinning helicase loading at bacterial chromosome origins (oriC) are unclear. Here we investigated the essential DNA replication initiation protein DnaD in the model organism Bacillus subtilis. A set of DnaD residues required for ssDNA binding was identified, and photo-crosslinking revealed that this ssDNA binding region interacts preferentially with one strand of oriC. Biochemical and genetic data support the model that DnaD recognizes a new single-stranded DNA (ssDNA) motif located in oriC, the DnaD Recognition Element (DRE). Considered with single particle cryo-electron microscopy (cryo-EM) imaging of DnaD, we propose that the location of the DRE within oriC orchestrates strand-specific recruitment of helicase during DNA replication initiation. These findings significantly advance our mechanistic understanding of bidirectional replication from a bacterial chromosome origin.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas de Unión al ADN , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Microscopía por Crioelectrón , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Origen de Réplica
4.
Nucleic Acids Res ; 51(9): 4302-4321, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36416272

RESUMEN

Bidirectional DNA replication from a chromosome origin requires the asymmetric loading of two helicases, one for each replisome. Our understanding of the molecular mechanisms underpinning helicase loading at bacterial chromosome origins is incomplete. Here we report both positive and negative mechanisms for directing helicase recruitment in the model organism Bacillus subtilis. Systematic characterization of the essential initiation protein DnaD revealed distinct protein interfaces required for homo-oligomerization, interaction with the master initiator protein DnaA, and interaction with the helicase co-loader protein DnaB. Informed by these properties of DnaD, we went on to find that the developmentally expressed repressor of DNA replication initiation, SirA, blocks the interaction between DnaD and DnaA, thereby restricting helicase recruitment from the origin during sporulation to inhibit further initiation events. These results advance our understanding of the mechanisms underpinning DNA replication initiation in B. subtilis, as well as guiding the search for essential cellular activities to target for antimicrobial drug design.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , ADN Helicasas , Esporas Bacterianas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , AdnB Helicasas/genética , AdnB Helicasas/metabolismo , Origen de Réplica , Esporas Bacterianas/metabolismo
6.
Nat Commun ; 12(1): 6834, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824240

RESUMEN

Conjugation is one of the most important processes that bacteria utilize to spread antibiotic resistance genes among bacterial populations. Interbacterial DNA transfer requires a large double membrane-spanning nanomachine called the type 4 secretion system (T4SS) made up of the inner-membrane complex (IMC), the outer-membrane core complex (OMCC) and the conjugative pilus. The iconic F plasmid-encoded T4SS has been central in understanding conjugation for several decades, however atomic details of its structure are not known. Here, we report the structure of a complete conjugative OMCC encoded by the pED208 plasmid from E. coli, solved by cryo-electron microscopy at 3.3 Å resolution. This 2.1 MDa complex has a unique arrangement with two radial concentric rings, each having a different symmetry eventually contributing to remarkable differences in protein stoichiometry and flexibility in comparison to other OMCCs. Our structure suggests that F-OMCC is a highly dynamic complex, with implications for pilus extension and retraction during conjugation.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli/metabolismo , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , ADN Bacteriano , Escherichia coli/genética , Fimbrias Bacterianas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Plásmidos , Sistemas de Secreción Tipo IV/genética
7.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33397726

RESUMEN

Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) utilize a macromolecular type III secretion system (T3SS) to inject effector proteins into eukaryotic cells. This apparatus spans the inner and outer bacterial membranes and includes a helical needle protruding into the extracellular space. Thus far observed only in EPEC and EHEC and not found in other pathogenic Gram-negative bacteria that have a T3SS is an additional helical filament made by the EspA protein that forms a long extension to the needle, mediating both attachment to eukaryotic cells and transport of effector proteins through the intestinal mucus layer. Here, we present the structure of the EspA filament from EPEC at 3.4 Å resolution. The structure reveals that the EspA filament is a right-handed 1-start helical assembly with a conserved lumen architecture with respect to the needle to ensure the seamless transport of unfolded cargos en route to the target cell. This functional conservation is despite the fact that there is little apparent overall conservation at the level of sequence or structure with the needle. We also unveil the molecular details of the immunodominant EspA epitope that can now be exploited for the rational design of epitope display systems.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Sistemas de Secreción Tipo III/metabolismo , Microscopía por Crioelectrón/métodos , Citoesqueleto/metabolismo , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enteropatógena/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Humanos , Transporte de Proteínas/fisiología , Sistemas de Secreción Tipo III/fisiología
8.
Cell ; 169(4): 708-721.e12, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28457609

RESUMEN

Relaxases play essential roles in conjugation, the main process by which bacteria exchange genetic material, notably antibiotic resistance genes. They are bifunctional enzymes containing a trans-esterase activity, which is responsible for nicking the DNA strand to be transferred and for covalent attachment to the resulting 5'-phosphate end, and a helicase activity, which is responsible for unwinding the DNA while it is being transported to a recipient cell. Here we show that these two activities are carried out by two conformers that can both load simultaneously on the origin of transfer DNA. We solve the structure of one of these conformers by cryo electron microscopy to near-atomic resolution, elucidating the molecular basis of helicase function by relaxases and revealing insights into the mechanistic events taking place in the cell prior to substrate transport during conjugation.


Asunto(s)
Conjugación Genética , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/genética , Microscopía por Crioelectrón , ADN Helicasas/química , ADN Bacteriano/química , ADN Bacteriano/ultraestructura , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares
9.
Cell ; 166(6): 1436-1444.e10, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27610568

RESUMEN

Conjugative pili are widespread bacterial appendages that play important roles in horizontal gene transfer, in spread of antibiotic resistance genes, and as sites of phage attachment. Among conjugative pili, the F "sex" pilus encoded by the F plasmid is the best functionally characterized, and it is also historically the most important, as the discovery of F-plasmid-mediated conjugation ushered in the era of molecular biology and genetics. Yet, its structure is unknown. Here, we present atomic models of two F family pili, the F and pED208 pili, generated from cryoelectron microscopy reconstructions at 5.0 and 3.6 Å resolution, respectively. These structures reveal that conjugative pili are assemblies of stoichiometric protein-phospholipid units. We further demonstrate that each pilus type binds preferentially to particular phospholipids. These structures provide the molecular basis for F pilus assembly and also shed light on the remarkable properties of conjugative pili in bacterial secretion and phage infection.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/fisiología , Factor F/química , Fimbrias Bacterianas/química , Modelos Moleculares , Fosfolípidos/química , Sitios de Ligazón Microbiológica/genética , Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , Factor F/genética , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Lípidos/química , Mutación , Fosfolípidos/metabolismo , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Sistemas de Secreción Tipo V/química , Sistemas de Secreción Tipo V/metabolismo
10.
Trends Microbiol ; 23(5): 301-10, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25825348

RESUMEN

Conjugation, the process by which plasmid DNA is transferred from one bacterium to another, is mediated by type IV secretion systems (T4SSs). T4SSs are versatile systems that can transport not only DNA, but also toxins and effector proteins. Conjugative T4SSs comprise 12 proteins named VirB1-11 and VirD4 that assemble into a large membrane-spanning exporting machine. Before being transported, the DNA substrate is first processed on the cytoplasmic side by a complex called the relaxosome. The substrate is then targeted to the T4SS for export into a recipient cell. In this review, we describe the recent progress made in the structural biology of both the relaxosome and the T4SS.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Conjugación Genética , Bacterias Gramnegativas/genética , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/fisiología , ADN Bacteriano/metabolismo , Bacterias Gramnegativas/metabolismo , Modelos Moleculares , Plásmidos , Sistemas de Secreción Tipo IV/genética
11.
PLoS Pathog ; 9(7): e1003508, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935486

RESUMEN

Bacterial populations co-ordinate gene expression collectively through quorum sensing (QS), a cell-to-cell communication mechanism employing diffusible signal molecules. The LysR-type transcriptional regulator (LTTR) protein PqsR (MvfR) is a key component of alkyl-quinolone (AQ)-dependent QS in Pseudomonas aeruginosa. PqsR is activated by 2-alkyl-4-quinolones including the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone), its precursor 2-heptyl-4-hydroxyquinoline (HHQ) and their C9 congeners, 2-nonyl-3-hydroxy-4(1H)-quinolone (C9-PQS) and 2-nonyl-4-hydroxyquinoline (NHQ). These drive the autoinduction of AQ biosynthesis and the up-regulation of key virulence determinants as a function of bacterial population density. Consequently, PqsR constitutes a potential target for novel antibacterial agents which attenuate infection through the blockade of virulence. Here we present the crystal structures of the PqsR co-inducer binding domain (CBD) and a complex with the native agonist NHQ. We show that the structure of the PqsR CBD has an unusually large ligand-binding pocket in which a native AQ agonist is stabilized entirely by hydrophobic interactions. Through a ligand-based design strategy we synthesized and evaluated a series of 50 AQ and novel quinazolinone (QZN) analogues and measured the impact on AQ biosynthesis, virulence gene expression and biofilm development. The simple exchange of two isosteres (OH for NH2) switches a QZN agonist to an antagonist with a concomitant impact on the induction of bacterial virulence factor production. We also determined the complex crystal structure of a QZN antagonist bound to PqsR revealing a similar orientation in the ligand binding pocket to the native agonist NHQ. This structure represents the first description of an LTTR-antagonist complex. Overall these studies present novel insights into LTTR ligand binding and ligand-based drug design and provide a chemical scaffold for further anti-P. aeruginosa virulence drug development by targeting the AQ receptor PqsR.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/fisiología , Quinolonas/metabolismo , Percepción de Quorum , Transducción de Señal , Factores de Transcripción/metabolismo , Alquilación , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/agonistas , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Sitios de Unión , Biopelículas/efectos de los fármacos , Diseño de Fármacos , Regulación Bacteriana de la Expresión Génica , Ligandos , Conformación Molecular , Proteínas Mutantes/agonistas , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Péptidos/agonistas , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Quinolonas/química , Quinolonas/farmacología , Percepción de Quorum/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/agonistas , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Virulencia/efectos de los fármacos
12.
Mol Microbiol ; 89(2): 324-33, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23710762

RESUMEN

Relaxases are proteins responsible for the transfer of plasmid and chromosomal DNA from one bacterium to another during conjugation. They covalently react with a specific phosphodiester bond within DNA origin of transfer sequences, forming a nucleo-protein complex which is subsequently recruited for transport by a plasmid-encoded type IV secretion system. In previous work we identified the targeting translocation signals presented by the conjugative relaxase TraI of plasmid R1. Here we report the structure of TraI translocation signal TSA. In contrast to known translocation signals we show that TSA is an independent folding unit and thus forms a bona fide structural domain. This domain can be further divided into three subdomains with striking structural homology with helicase subdomains of the SF1B family. We also show that TSA is part of a larger vestigial helicase domain which has lost its helicase activity but not its single-stranded DNA binding capability. Finally, we further delineate the binding site responsible for translocation activity of TSA by targeting single residues for mutations. Overall, this study provides the first evidence that translocation signals can be part of larger structural scaffolds, overlapping with translocation-independent activities.


Asunto(s)
Conjugación Genética/genética , ADN Helicasas/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Estructura Terciaria de Proteína/genética , Sistemas de Secreción Bacterianos , Cristalización , ADN Helicasas/genética , ADN Helicasas/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Plásmidos/genética , Dominios y Motivos de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...