RESUMEN
Microbial electrolysis cells (MECs) can be used as a downstream process to dark fermentation to further capture electron in volatile fatty acids that remain after fermentation, improving this way the viability of the overall process. Acetic and propionic acid are common products of dark fermentation. The main objective of this work was to investigate the effect of different initial concentrations of a mixture of acetic and propionic acids on MECs microbial ecology and hydrogen production performance. To link microbial structure and function, we characterized the anode respiring biofilm communities using pyrosequencing and quantitative-PCR. The best hydrogen production rates (265mL/d/Lreactor) were obtained in the first block of experiments by MEC fed with 1500mg/L acetic acid and 250mg/L propionic acid. This reactor presents in the anode biofilm an even distribution of Proteobacteria, Firmicutes and Bacteroidetes and Arcobacter was the dominant genera. The above fact also correlated to the highest electron load among all the reactors. It was evidenced that although defined acetic and propionic acid concentrations fed affected the structure of the microbial consortia that developed at the anode, the initial inoculum played a major role in the development of MEC microbial consortia.