Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(48): eadg8495, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38019912

RESUMEN

Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. We develop a system that accurately reports OCT4 protein levels in live cells and use it to reveal the trajectories of OCT4 in successful reprogramming. Our system comprises a synthetic genetic circuit that leverages noise to generate a wide range of OCT4 trajectories and a microRNA targeting endogenous OCT4 to set total cellular OCT4 protein levels. By fusing OCT4 to a fluorescent protein, we are able to track OCT4 trajectories with clonal resolution via live-cell imaging. We discover that a supraphysiological, stable OCT4 level is required, but not sufficient, for efficient iPSC colony formation. Our synthetic genetic circuit design and high-throughput live-imaging pipeline are generalizable for investigating TF dynamics for other cell fate programming applications.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular/genética , Células Cultivadas , Reprogramación Celular/genética , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nat Commun ; 14(1): 1339, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906659

RESUMEN

Genetic circuits that control transgene expression in response to pre-defined transcriptional cues would enable the development of smart therapeutics. To this end, here we engineer programmable single-transcript RNA sensors in which adenosine deaminases acting on RNA (ADARs) autocatalytically convert target hybridization into a translational output. Dubbed DART VADAR (Detection and Amplification of RNA Triggers via ADAR), our system amplifies the signal from editing by endogenous ADAR through a positive feedback loop. Amplification is mediated by the expression of a hyperactive, minimal ADAR variant and its recruitment to the edit site via an orthogonal RNA targeting mechanism. This topology confers high dynamic range, low background, minimal off-target effects, and a small genetic footprint. We leverage DART VADAR to detect single nucleotide polymorphisms and modulate translation in response to endogenous transcript levels in mammalian cells.


Asunto(s)
Edición Génica , Edición de ARN , Animales , Regulación de la Expresión Génica , ARN/metabolismo , Redes Reguladoras de Genes , Adenosina Desaminasa/genética , Mamíferos/genética
4.
bioRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36747813

RESUMEN

Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. Here, we identify the successful reprogramming trajectories of the core pluripotency TF, OCT4, and design a genetic controller that enforces such trajectories with high precision. By combining a genetic circuit that generates a wide range of OCT4 trajectories with live-cell imaging, we track OCT4 trajectories with clonal resolution and find that a distinct constant OCT4 trajectory is required for colony formation. We then develop a synthetic genetic circuit that yields a tight OCT4 distribution around the identified trajectory and outperforms in terms of reprogramming efficiency other circuits that less accurately regulate OCT4. Our synthetic biology approach is generalizable for identifying and enforcing TF dynamics for cell fate programming applications.

5.
Nat Commun ; 13(1): 1720, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361767

RESUMEN

Engineered signaling networks can impart cells with new functionalities useful for directing differentiation and actuating cellular therapies. For such applications, the engineered networks must be tunable, precisely regulate target gene expression, and be robust to perturbations within the complex context of mammalian cells. Here, we use bacterial two-component signaling proteins to develop synthetic phosphoregulation devices that exhibit these properties in mammalian cells. First, we engineer a synthetic covalent modification cycle based on kinase and phosphatase proteins derived from the bifunctional histidine kinase EnvZ, enabling analog tuning of gene expression via its response regulator OmpR. By regulating phosphatase expression with endogenous miRNAs, we demonstrate cell-type specific signaling responses and a new strategy for accurate cell type classification. Finally, we implement a tunable negative feedback controller via a small molecule-stabilized phosphatase, reducing output expression variance and mitigating the context-dependent effects of off-target regulation and resource competition. Our work lays the foundation for establishing tunable, precise, and robust control over cell behavior with synthetic signaling networks.


Asunto(s)
Proteínas Bacterianas , Fosfotransferasas , Animales , Histidina Quinasa/genética , Mamíferos , Fosforilación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...