Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(8)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37630682

RESUMEN

The aim of this study was to establish a link between genetic diversity and the geographic origin of Pectobacterium strains belonging to three species-P. carotovorum, P. versatile, and P. odoriferum-isolated from cabbage in Serbia by comparing their sequences with those of strains sourced from different hosts and countries in Europe, Asia, and North America. Phylogeographic relatedness was reconstructed using the Templeton, Crandall, and Sing's (TCS) haplotype network based on concatenated sequences of the housekeeping genes dnaX, icdA, mdh, and proA, while pairwise genetic distances were computed by applying the p-distance model. The obtained TCS haplotype networks indicated the existence of high intra-species genetic diversity among strains of all three species, as reflected in the 0.2-2.3%, 0.2-2.5%, and 0.1-1.7% genetic distance ranges obtained for P. carotovorum, P. versatile, and P. odoriferum, respectively. Five new haplotypes (denoted as HPc1-HPc5) were detected among cabbage strains of P. carotovorum, while one new haplotype was identified for both P. versatile (HPv1) and P. odoriferum (HPo1). None of the TCS haplotype networks provided evidence of significant correlation between geographic origin and the determined haplotypes, i.e., the infection origin. However, as haplotype network results are affected by the availability of sequencing data in public databases for the used genes and the number of analyzed strains, these findings may also be influenced by small sample size.

2.
Microorganisms ; 11(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37512871

RESUMEN

In this paper, a comprehensive overview of the 'Candidatus Liberibacter solanacearum' presence in Europe was provided. The analyzed findings revealed that, since the first appearance of this pathogen in Finland and Spain in 2008, it has spread to 13 new European countries. Therefore, 'Ca. L. solanacearum' has spread very quickly across the European continent, as evident from the emergence of new host plants within the Apiaceae, Urticaceae, and Polygonaceae families, as well as new haplotypes of this pathogen. Thus far, 5 of the 15 'Ca. L. solanacearum' haplotypes determined across the globe have been confirmed in Europe (haplotypes C, D, E, U, and H). Fully competent 'Ca. L. solanacearum' vectors include Bactericera cockerelli, Trioza apicalis, and B. trigonica; however, only T. apicalis and B. trigonica are presently established in Europe and are very important for plants from the Apiaceae family in particular. Moreover, psyllid species such as B. tremblayi, T. urticae, and T. anthrisci have also been confirmed positive for 'Ca. L. solanacearum'. Constant monitoring of its spread in the field (in both symptomatic and asymptomatic plants), use of sensitive molecular diagnostic techniques, and application of timely management strategies are, therefore, of utmost importance for the control of this destructive pathogen.

3.
Microorganisms ; 11(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36838301

RESUMEN

The aim of this work was to identify and characterize the pectolytic bacteria responsible for the emergence of bacterial soft rot on two summer cabbage hybrids (Cheers F1 and Hippo F1) grown in the Futog locality (Backa, Vojvodina), known for the five-century-long tradition of cabbage cultivation in Serbia. Symptoms manifesting as soft lesions on outer head leaves were observed during August 2021, while the inner tissues were macerated, featuring cream to black discoloration. As the affected tissue decomposed, it exuded a specific odor. Disease incidence ranged from 15% to 25%. A total of 67 isolates producing pits on crystal violet pectate (CVP) medium were characterized for their phenotypic and genotypic features. The pathogenicity was confirmed on cabbage heads. Findings yielded by the repetitive element palindromic-polymerase chain reaction (rep-PCR) technique confirmed interspecies diversity between cabbage isolates, as well as intraspecies genetic diversity within the P. carotovorum group of isolates. Based on multilocus sequence typing (MLST) using genes dnaX, mdh, icdA, and proA, five representative isolates were identified as Pectobacterium carotovorum (Cheers F1 and Hippo F1), while two were identified as Pectobacterium versatile (Hippo F1) and Pectobacterium odoriferum (Hippo F1), respectively, indicating the presence of diverse Pectobacterium species even in combined infection in the same field. Among the obtained isolates, P. carotovorum was the most prevalent species (62.69%), while P. versatile and P. odoriferum were less represented (contributing by 19.40% and 17.91%, respectively). Multilocus sequence analysis (MLSA) performed with concatenated sequences of four housekeeping genes (proA, dnaX, icdA, and mdh) and constructed a neighbor-joining phylogenetic tree enabled insight into the phylogenetic position of the Serbian cabbage Pectobacterium isolates. Bacterium P. odoriferum was found to be the most virulent species for cabbage, followed by P. versatile, while all three species had comparable virulence with respect to potato. The results obtained in this work provide a better understanding of the spreading routes and abundance of different Pectobacterium spp. in Serbia.

4.
Plant Dis ; 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471469

RESUMEN

In May 2021, a tomato producer reported an occurrence of a disease unknown so far in a greenhouse near Split, Croatia. About 30% of plants (cultivar Signora) have been affected. Symptoms resembled tomato pith necrosis, bacterial disease caused by Pseudomonas corrugata, known to occur sporadically in tomato greenhouse production in Croatia. Leaves on plants developed interveinal chlorosis, followed by necrosis and leaf collapse. When main stems were longitudinally cut, brown, disintegrated and water-soaked partly hollow pith was evident. Severely affected plants wilted. With suspicion on presence of P. corrugata, bacteria were isolated from surface-sterilized pith tissue of two tomato plants by plating onto sucrose peptone agar (SPA) and King's B medium (KB). Colonies recovered were cream-colored on SPA and non-florescent on KB. Two isolates, assigned as 1-KB and 3A, were first identified by amplification of internal transcribed spacer (ITS1) between16S rRNA and 23S rRNA using primers D21 and D22 (Manceau and Horvais 1997). The 550-bp PCR products obtained were purified and sequenced. Subsequent BLAST search showed the sequences to have 100% identity with the strain DSM 16733 isolated from tomato in Italy (Accession No. LT629790.1) and 99.77% identity with the strain SM664-12 isolated from tomato in USA (Acc. No. KC405207.1) of Pseudomonas mediterranea from NCBI. ITS sequence for one isolate 3A was deposited in GenBank under the Accession No. OP765279.1. Further identification was performed by using species-specific primers PC1/1-PC1/2 for P. mediterranea (Catara et al. 2000, 2002). Amplification of 600 bp DNA fragment confirmed the identity of isolates 1-KB and 3A as P. mediterranea. For this region sequence of isolate 3A was deposited in GenBank under the Acc. No. OP068273.1. Pathogenicity was assessed on tomato plants (cultivar Moneymaker) grown in pots in bio-chamber. Plants were grown at 25/20 °C 12h/12h dark/light regime until 8-leaves stage (BBCH 18). P. mediterranea isolate 3A was used for the inoculation. Inoculum was prepared from the isolate grown on KB medium for 48 h and suspended in sterile distilled water (concentration of 109 CFU mL-1) by dilution plate counts. Ten plants were inoculated with 10 µl of bacterial suspension injected into the stem with a syringe. Five control plants were inoculated with sterile distilled water. After 40 days of plant growth, symptoms were visible on all plants inoculated with P. mediterranea isolate 3A. Although no wilting was observed and all plants were alive, chlorosis was observed on upper leaves, chlorosis and necrosis on middle leaves, while basal leaves wilted. Longitudinal cross-sections of stems revealed brownish pith tissue with longitudinal watery pits spreading from inoculation points (Fig.S1). Symptoms were not observed on control plants. Bacterium was reisolated from three plants showing the most severe symptoms and proved to be identical to the original using species-specific primer pair PC1/1-PC1/2. To our knowledge, this is the first confirmation of P. mediterranea causing tomato pith necrosis in Croatia. Tomato pith necrosis caused by P. mediterranea may become significant bacterial disease of greenhouse tomato in Croatia.

5.
Plant Pathol J ; 38(6): 551-571, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36503185

RESUMEN

Xylella fastidiosa is xylem-limited bacterium capable of infecting a wide range of host plants, resulting in Pierce's disease in grapevine, citrus variegated chlorosis, olive quick decline syndrome, peach phony disease, plum leaf scald, alfalfa dwarf, margin necrosis and leaf scorch affecting oleander, coffee, almond, pecan, mulberry, red maple, oak, and other types of cultivated and ornamental plants and forest trees. In the European Union, X. fastidiosa is listed as a quarantine organism. Since its first outbreak in the Apulia region of southern Italy in 2013 where it caused devastating disease on Olea europaea (called olive leaf scorch and quick decline), X. fastidiosa continued to spread and successfully established in some European countries (Corsica and PACA in France, Balearic Islands, Madrid and Comunitat Valenciana in Spain, and Porto in Portugal). The most recent data for Europe indicates that X. fastidiosa is present on 174 hosts, 25 of which were newly identified in 2021 (with further five hosts discovered in other parts of the world in the same year). From the six reported subspecies of X. fastidiosa worldwide, four have been recorded in European countries (fastidiosa, multiplex, pauca, and sandyi). Currently confirmed X. fastidiosa vector species are Philaenus spumarius, Neophilaenus campestris, and Philaenus italosignus, whereby only P. spumarius (which has been identified as the key vector in Apulia, Italy) is also present in Americas. X. fastidiosa control is currently based on pathogen-free propagation plant material, eradication, territory demarcation, and vector control, as well as use of resistant plant cultivars and bactericidal treatments.

6.
Plant Dis ; 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34410856

RESUMEN

Potato blackleg is frequently observed on the production fields in the Backa region of Vojvodina province, which is one of the largest potato-growing areas in Serbia. This disease usually occurs during June and July. In July 2020, blackleg symptoms in the form of stem necrotic lesions, vascular discoloration, hollow stems, and wilting of whole plants were noted on potato cultivar VR808 on a field 28 ha in size located in Maglic village (GPS coordinates 45.349325 N, 19.542768 E). Disease incidence was estimated at 20-25%. Isolations were performed from 12 potato samples on Crystal Violet Pectate medium (CVP). Stem sections consisted of brown lesions and healthy tissue (c.10 cm) were surface sterilized with ethyl alcohol 70% (w/v) and rinsed with sterile distilled water. Small pieces of tissue were taken at the edges of stem lesions (between healthy and diseased tissue) were soaked in phosphate buffer saline for 20 min and plated using a standard procedure (Klement et al. 1990). Single colonies that formed pits after 48 hours at 26 °C were re-streaked onto Nutrient Agar (NA) where creamy white colonies with smooth surfaces were formed. A total of 30 isolates were selected and DNA isolated from the colonies was further analyzed by polymerase chain reaction (PCR) using the partial dnaX gene (DNA polymerase subunit III gamma/tau) with primer pair dnaXf/dnaXr for Pectobacterium and Dickeya species identification (Slawiak et al. 2009). A single characteristic band of 535 bp was amplified in all isolates (Slawiak et al. 2009). DNA sequence alignment showed two distinct groups of isolates (Fig.S1), which were genetically uniform within each group. Using BLASTn search, it was established that the dnaX sequence of the first group (consisting of 19 Serbian potato isolates) had 99.79% identity with NCBI-deposited Pectobacterium versatile strains 14A and 3-2 from potato from Belarus (Acc. No. CP034276 and CP024842, respectively) as well as SCC1 from Finland (Acc. No. CP021894). The remaining 11 dnaX sequences had 100% identity with Pectobacterium carotovorum subsp. carotovorum strain CFBP7081 originating from water in Spain (Acc. No. MK516961). The partial dnaX sequences of three Serbian P. versatile isolates (Pv1320, Pv1520, and Pv1620) and one P. carotovorum subsp. carotovorum (Pcc2520) were deposited in GenBank under Acc. No. MW839571, MW805306, MW839572, and MW805307, respectively. These results, indicating combined infection in the observed field, signify the first identification of P. versatile in Serbia. Multilocus sequence analysis (MLSA) performed with proA (proAF1/ proAR1) and mdh (mdh2/mdh4) genes (Ma et al. 2007; Moleleki et al. 2013) grouped three tested Serbian potato P. versatile isolates together with P. versatile strains from NCBI (Fig.S2). For both tested genes, BLASTn search revealed 100% homology with P. versatile strain SCC1 from Finland. Three Serbian P. versatile potato isolates were deposited under Acc. Nos. MZ682623-25 for proA and MZ682620-22 for mdh genes. According to the routine tests suggested for Pectobacteriaceae (Schaad et al. 2001), Serbian isolates possessed microbiological traits identical to P. versatile description (Portier et al. 2019). Pathogenicity was performed on potato cultivar VR808 with three selected P. versatile isolates (Pv1320, Pv1520, and Pv1620) in the following assays: (i) surface-sterilized tuber slices with holes in the center filled with 100 µL of bacterial suspensions (adjusted to 109 CFU mL-1) to test the isolates' ability to cause soft rot, and (ii) young, four-week old plants with developed 3rd true leaf (c. 30 cm tall) were inoculated by injecting stems with bacterial suspension adjusted to 107 - 108 CFU mL-1 at a height 5 cm above the soil line. Negative controls were treated with sterile distilled water. Inoculated plants were kept under controlled conditions (25 °C temperature and >70% relative humidity). Each assay was replicated twice. Soft rot appeared on tuber slices 24 h after inoculation. On inoculated stems, initial symptoms manifested as greasy elongated spots at inoculation sites two days after inoculation (DAI), and subsequently extended along the vascular tissue and became necrotic. Whole plant's decay was recorded in five DAI, while negative controls remained healthy. To complete Koch's postulates, bacteria were re-isolated from symptomatic potato plants and confirmed by PCR and sequencing of dnaX. This first report of P. versatile in potato indicates that blackleg currently present in Serbia is caused by a diverse bacterial population. This pathogen was first identified in genome comparison as 'Candidatus Pectobacterium maceratum' (Shirshikov et al. 2018) and was later renamed as Pectobacterium versatile sp. nov. (Portier et al. 2019). Thus far, bacterium Pectobacterium carotovorum subsp. brasiliensis has been recognized as dominant pathogen on most of the infected fields in Vojvodina province, and was recently noted on one plot subjected to a combined infection with Dickeya dianthicola (Markovic et al. 2021). Findings achieved in this study are highly relevant, as they point to the diversity in potato blackleg pathogens, likely due to the increasingly widespread distribution of imported seed potatoes.

7.
Plant Dis ; 105(4): 1080-1090, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32840436

RESUMEN

Blackleg outbreaks were noticed on three fields (about 100 ha total) in 2 consecutive years (2018, 2019) in one of the main potato growing areas in Serbia (Backa region, Vojvodina). The percentage of infected plants reached 40 to 70%, with 10.5 to 44.7% yield reductions. From the three fields, out of 90 samples Pectobacterium carotovorum subsp. brasiliensis was most frequently identified and diagnosed as causal agent of potato blackleg in Serbia for the first time (29 isolates). Dickeya dianthicola was a less frequently causative bacterium, which was also noticed for the first time (nine isolates). A total of 38 isolates were characterized based on their phenotypic and genetic features, including a pathogenicity test on potato. The repetitive element PCR (rep-PCR) using BOX, REP, and ERIC primer pairs differentiated five genetic profiles among 38 tested isolates. Multilocus sequence analysis (MLSA) of four housekeeping genes, acnA, gapA, icdA, and mdh, revealed the presence of three so far unknown P. c. subsp. brasiliensis multilocus genotypes and confirmed clustering into two main genetic clades as determined in other studies. MLSA also revealed the presence of a new genotype of D. dianthicola in Serbia.


Asunto(s)
Solanum tuberosum , Dickeya , Pectobacterium , Enfermedades de las Plantas , Serbia
8.
Plant Dis ; 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258428

RESUMEN

At the beginning of July 2020, three-month-old carrot plants (Daucus carota L. variety Maestro F1) grown in a commercial field 1.2 ha in size at the Begec locality (45°14'30.38" N 19°36'44.82" E) in southern part of the Backa region, Vojvodina, Serbia, exhibited symptoms of yellowing and reddish leaf discoloration. At the end of July, leaves on the infected plants became bronze and purplish, while their shoots and roots were stunted due to dehydration, with pronounced proliferation. In some cases, the damage was so extensive that it led to plant decay. The disease incidence of 0.5-1% recorded early in July rapidly escalated, reaching 10-15% in the first ten days of August. The observed symptoms resembled those caused by 'Candidatus Liberibacter solanacearum' (CaLso), a phloem-limited proteobacterium (1). To detect and identify CaLso, 15 symptomatic diseased and 5 asymptomatic healthy carrot plants were subjected to conventional polymerase chain reactions (PCR) using two primer sets specific to CaLso, and positive PCR products were further sequenced using commercial facilities (Macrogen Europe). Total DNA was extracted from petiole and root tissues using a commercial kit (Qiagen DNEasy Plant Mini Kit) following the manufacturer-recommended protocol. In the first PCR, using the Lso TX 16/23 F/R primer pair that targets the 16S-23S rRNA IGS region specific to CaLso (2), all 15 diseased samples yielded a band of 383 bp size. After sequencing, 100% homology was noted among tested isolates; therefore, one isolate coded as 1842/20 was chosen as representative and was deposited in NCBI GenBank under Accession number MT948144. BLAST analysis showed 99.70% identity of Serbian carrot isolates with those of the CaLso isolate 80022 originating from celery seed in Slovenia or Italy (Acc. no. KY619977) (3), as well as 99.41% identity with isolate GBBC_Clso_03 from carrot in Belgium (Acc. no. MH734515) and 98.22% identity with the sequence of the CaLso reference strain NZ082226 (Acc. no. EU834130) isolated from tomato in New Zealand (4). In the second PCR, species-specific forward primer LsoF empirically designed at the signature region of the 16S rRNA sequence of CaLso (5) in combination with the universal liberibacter reverse primer OI2c (6) yielded a target of 1163 bp size in all 15 diseased symptomatic carrot samples. Representative isolate 1842/20 was deposited in NCBI GenBank under Acc. no. MW187524. Based on the nucleotide BLAST analysis, the sequence of Serbian carrot isolate showed 100% identity with CaLso strains 16-004 and 16-011 originating from carrot in Finland (Acc. no. MG701014 and MG701015, respectively) and 99.64% identity with CaLso reference strain NZ082226 (Acc. no. EU834130). Five healthy asymptomatic carrot plant samples were negative for the presence of CaLso in both PCR tests employed in this work. To our knowledge, this is the first report of CaLso causing the disease in carrot in Serbia. These results suggest a wider distribution of this pathogen than previously reported in Europe. In 2014, Psyllid Bactericera trigonica (Hemiptera, Triozidae) was described for the first time as a potential vector for CaLso transmission in few localities, including Begec (7). Considering that its vectors are presently unidentified, certain aspects of CaLso genomics, diversity, epidemiology and vector dynamics will be studied further in future investigations.

9.
Plant Dis ; 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33021913

RESUMEN

Xanthomonas arboricola pv. pruni (Xap) causes bacterial spot of leaves and fruits, defoliation, fruit dropping and twigs, branches or trunk cankers in most cultivated and ornamental Prunus species. The bacterium is listed as an EPPO (European and Mediterranean Plant Protection Organisation) A2 quarantine pathogen. Xap was first detected in 2019 on peach [Prunus persica L., unknown cultivar (cv.)] leaves in a 13-year-old orchard located in Irig (GPS: 45°6'10.538'' N, 19°54'8.04'' E), with a disease incidence of 10-20%. Thereafter, Xap was detected in 2020 on apricot (Prunus armeniaca L., cvs. NS4, NS Rodna and Roxana) leaves and fruits in a 5-year-old orchard located in Besenovo (GPS: 45°04'59.0'' N, 19°41'23.0'' E), with disease incidence of 30-50%. Symptoms on leaves appeared along leaf midribs or margins in form of brown to black spots, with a pale green to yellow halo, evident on both leaf surfaces. The diseased area on leaves dropped out giving a shot-hole appearance, leaves turn yellow and drop prematurely. Bacterial spots of apricot fruits appeared in form of water-soaked or dark brown sunken lesions. Primarly detection of Xap in collected samples was obtained using polymerase chain reaction (PCR) with Xap - specific primers XapY17-F/XapY17-R, after amplifying target fragments of 943-bp (1). Xap reference strain NCPPB 3156 served as positive control. Isolations performed on yeast extract-dextrose-calcium carbonate agar (YDC) resulted in pale yellow, circular, raised and mucoid colonies after 3 days at 26 °C. A total of 20 representative isolates were aerobic, gram negative, catalase positive, oxidase and arginine dihydrolase negative; they induced hypersensitivity reaction, reduced nitrates, hydrolyzed aesculin and gelatine, but not starch, produced H2S, not produced indole (2). NCBI BLASTn search of the ftsX (ABC transporter ATP-binding protein) sequences (1) indicated 100% identity of Serbian isolates with Xap strains XAP HU2 (P. persica, Acc. no. MG049921) and XAP HU1 (P. armeniaca, Acc. no. KY039173) from Hungary. The nucleotide sequences of one isolate from peach (Xp219) and one from apricot (Xp320) were deposited in GenBank under Acc. nos. MT890969 and MT890970, respectively. Pathogenicity was performed on detached peach and apricot leaves for all 20 isolates and on leaves and shoots of potted 1-year-old plants of peach (cv. Vineyard peach) and apricot (cv. NS Rodna) for three isolates from each host (3, 4). Sterile distilled water and reference strain NCPPB 3156 were used as negative and positive controls. On detached leaves all isolates caused typical water-soaked spots 3 days after inoculation (DAI), while 10 DAI spots became brown and necrotic. Same symptoms were appeared on the leaves of potted plants. On peach and apricot shoots water-soaked, slightly reddish lesions emerged on inoculation sites 7-10 DAI, while 20 DAI lesions become dark, circular to elliptical 3.5-4 and 2.5-3 cm in size for peach and apricot, respectively. Negative controls were symptomless. Reisolated bacteria were confirmed to be the same as the original using PCR (1), fulfilling Koch's postulates. This is the first report of Xap in Serbia, which has occurred with a limited distribution in the Fruska Gora region (Vojvodina). Only two orchards in Serbia have been deteched with Xap so far. In the diseased peach orchard Xap was eradicated by uprooting trees. The apricot orchard is still under official control to limit disease spread. Appropriate cultivation practices, national inspection and surveillance is in place to prevent further pathogen spread and establishment to new hosts and regions in Serbia.

10.
Nat Prod Commun ; 12(2): 185-188, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30428207

RESUMEN

The effectiveness of medicinal plants is mainly associated with their active constituents, but one of the major quality problems frequently encountered is their high trace metals content that can be associated to extensive pollution of the environment where medicinal plants grow. Therefore the aim of this research was to evaluate the content of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn and As in selected and frequently used medicinal plants, including chicory, broadleaf, common comfrey and dandelion. The plant material was collected from their wild habitats in the area of highly developed power plant activity during the summer of 2015. Plant analyses were done according to ICP methodology, using ICAP 6300 ICP optical emission spectrometer. The obtained results showed that the content of As, Cd, Co, Mn, Ni and Zn in the investigated medicinal plant species was below the maximum permissible concentration, while in all parts of all studied plants the concentration of Cr was toxic. The toxic concentrations of Cu were determined in root and aerial parts of chicory and common comfrey, and the toxic concentrations of Fe in root and aerial parts of dandelion and broadleaf plantain, and in aerial parts of common comfrey. However, high but not toxic content of Pb was found in aerial parts of chicory. It can be concluded that medicinal plants from the studied growing site are not appropriate for use in alternative medicine and that a determination of trace metals content in these plants must become a standard criterion for evaluation of their quality.


Asunto(s)
Metales Pesados/análisis , Plantas Medicinales/química , Centrales Eléctricas , Oligoelementos/análisis , Componentes Aéreos de las Plantas/química , Raíces de Plantas/química
11.
Plant Dis ; 100(1): 164-170, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30688579

RESUMEN

Geranium leaves and stems with symptoms of bacterial blight were collected from commercial greenhouses during the last decade in Serbia. In total, 17 isolates with colony morphology typical for the genus Xanthomonas were characterized with pathogenicity, biochemical, serological, and molecular assays. All 17 isolates reacted positive in a polymerase chain reaction (PCR) using XcpM1 and XcpM2 primers specific for Xanthomonas hortorum pv. pelargonii. In pathogenicity tests on Pelargonium zonale (leaf and stem inoculation), all isolates caused typical symptoms on leaves starting 2 days after inoculation as sunken, water-soaked, irregular lesions, and 6 to 8 days after inoculation on stems as necrotic lesions also showing yellow exudate. Symptoms resulted in general wilting of inoculated plants 20 days after inoculation. Selected phenotypic tests indicated that all isolates showed the same results as described for the bacterium X. hortorum pv. pelargonii. Repetitive sequence-based PCR typing using BOX and ERIC revealed that all isolates showed two fingerprinting profiles but (GTG)5 and REP did not reveal differences. Multilocus sequence typing of partial sequences of rpoD, dnaK, fyuA, and gyrB genes of tested isolates and sequences obtained from GenBank of Xanthomonas pathovar pathotype strains did not reveal genetic variability among the isolates, showing the same gene sequence pattern.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA