Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 159: 111521, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32763558

RESUMEN

Plastic pollution is a concern in many nearshore ecosystems, and it is critical to understand how microplastics (plastics <5 mm in length) affect nearshore marine biota. Here, we report the presence of microplastics in the benthic, upside-down jellyfish (Cassiopea xamachana) across three estuaries in south Florida. Microplastics were recovered from Cassiopea using an acid digestion, then enumerated via microscopy, and identified using micro Fourier-transform interferometer (µFTIR) analysis. Out of 115 specimens analyzed, 77% contained microplastics. Bell diameter and number of plastics per individual varied significantly across locations with the highest plastic densities and bell diameter observed in individuals from Big Pine Key, followed by Jupiter, and Sarasota. µFTIR analysis confirmed that synthetic microfibers were the dominant microplastic measured at all three locations and may indicate Cassiopea as potential sinks of microplastic. Cassiopea may be used as bioindicators of microplastic contamination in the future, allowing for potential plastic pollution mitigation.


Asunto(s)
Estuarios , Contaminantes Químicos del Agua/análisis , Animales , Ecosistema , Monitoreo del Ambiente , Florida , Microplásticos , Plásticos
2.
Mar Pollut Bull ; 146: 502-508, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31426187

RESUMEN

In recent decades, oyster reefs have been deteriorating throughout North America as a result of multiple interacting anthropogenic stressors, including pesticide pollution. Here we elucidated the potential chronic effects of the commonly utilized pesticide, carbaryl, on oyster reef communities in the Loxahatchee River Estuary in southeast Florida. Though carbaryl had a limited effect on total epifaunal community diversity, species richness and evenness, the results of this experiment indicate that carbaryl significantly shifted crustacean community composition, resulting in a substantial loss in total crustacean abundance. One crustacean in particular, Americorophium spp. (tube building amphipod), was significantly less abundant within the carbaryl treatment, driving the shift in crustacean community composition. Ultimately, our results signal that pesticide pollution in estuaries will negatively impact crustaceans. Over time, this may shift benthic community composition, potentially disrupting species interactions and threatening valuable economic and ecosystem services.


Asunto(s)
Ostreidae/efectos de los fármacos , Plaguicidas/toxicidad , Animales , Ecosistema , Estuarios , Florida , América del Norte , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA