Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 166: 1-12, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37137177

RESUMEN

Developing an efficient and environment-friendly route for waste valorization is extremely significant in accelerating the transition toward a circular economy. A novel waste-to-synthetic natural gas (SNG) conversion process comprising hybrid renewable energy systems is proposed for this purpose. This includes thermochemical waste conversion and power-to-gas technologies for simultaneous waste utilization and renewable energy storage applications. The energy and environmental performances of the proposed waste-to-SNG plant are assessed and optimized. Results indicated that the implementation of a thermal pretreatment unit prior to the plasma gasification (two-step) is beneficial to improve the yield of hydrogen in the syngas, thereby leading to less renewable energy requirement for green hydrogen production used in the methanation process. This also enhances SNG yield by a factor of 30% as compared to the case without thermal pretreatment (one-step). The overall energy efficiency (OE) of the proposed waste-to-SNG plant is in the range of 61.36-77.73%, while the energy return on investment (EROI) ranges between 2.66 and 6.11. Most environmental impacts are mainly contributed by the indirect carbon emissions as a consequence of the power requirement for thermal pretreatment, plasma gasifier, and auxiliary equipment. The value of specific electricity consumption for SNG production of the treated RDF exhibits 1.70-9.25 % less than that of raw RDF when the pretreatment temperature is less than 300 °C. The OE of the system declines by 4.52% when 50 wt% of biomass is mixed in the fuel, whereas an enhancement of 18.33% in EROI and a reduction of 16.19% in specific CO2 emissions are obtained.


Asunto(s)
Gas Natural , Eliminación de Residuos , Eliminación de Residuos/métodos , Energía Renovable , Temperatura , Hidrógeno
2.
Bioresour Technol ; 314: 123740, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32622281

RESUMEN

Plasma gasification of raw and torrefied woody, non-woody, and algal biomass using three different gasifying agents (air, steam, and CO2) is conducted through a thermodynamic analysis. The impacts of feedstock and reaction atmosphere on various performance indices such as syngas yield, pollutant emissions, plasma energy to syngas production ratio (PSR), and plasma gasification efficiency (PGE) are studied. Results show that CO2 plasma gasification gives the lowest PSR, thereby leading to the highest PGE among the three reaction atmospheres. Torrefied biomass displays increased syngas yield and PGE, but is more likely to have a negative environmental impact of N/S pollutants in comparison with raw one, especially for rice straw. However, the exception is for torrefied grape marc and macroalgae which produce lower amounts of S-species under steam and CO2 atmospheres. Overall, torrefied pine wood has the best performance for producing high quality syngas containing low impurities among the investigated feedstocks.


Asunto(s)
Gases , Vapor , Biomasa , Madera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA