Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(2): e4860, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38149326

RESUMEN

Cystathionine- ß $$ \beta $$ -synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They mediate magnesium homeostasis directly by transport of Mg2+ ions and indirectly by regulation of the transient receptor potential ion channel subfamily M member 7 (TRPM7). Here, we report the crystal structure of the extracellular domain of tapeworm CNNM4. The domain forms a dimer of immunoglobulin-like (Ig-like) folds with electron density observed for three glycosylation sites. Analytical ultracentrifugation confirms that mutations in the extracellular domain of human CNNM4 prevent its dimerization. An analogous mutation in mouse CNNM2 impairs its activity in a cellular assay of Mg2+ transport.


Asunto(s)
Proteínas de Transporte de Catión , Canales Catiónicos TRPM , Humanos , Ratones , Animales , Dimerización , Magnesio/química , Mutación , Proteínas de Transporte de Membrana , Homeostasis , Proteínas Serina-Treonina Quinasas/genética , Canales Catiónicos TRPM/genética , Proteínas de Transporte de Catión/química
2.
Sci Adv ; 9(20): eadf8169, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37205763

RESUMEN

Sialic acids linked to glycoproteins and glycolipids are important mediators of cell and protein recognition events. These sugar residues are removed by neuraminidases (sialidases). Neuraminidase-1 (sialidase-1 or NEU1) is a ubiquitously expressed mammalian sialidase located in lysosomes and on the cell membrane. Because of its modulation of multiple signaling processes, it is a potential therapeutic target for cancers and immune disorders. Genetic defects in NEU1 or in its protective protein cathepsin A (PPCA, CTSA) cause the lysosomal storage diseases sialidosis and galactosialidosis. To further our understanding of this enzyme's function at the molecular level, we determined the three-dimensional structure of murine NEU1. The enzyme oligomerizes through two self-association interfaces and displays a wide substrate-binding cavity. A catalytic loop adopts an inactive conformation. We propose a mechanism of activation involving a conformational change in this loop upon binding to its protective protein. These findings may facilitate the development of selective inhibitor and agonist therapies.


Asunto(s)
Lisosomas , Neuraminidasa , Animales , Ratones , Membrana Celular/metabolismo , Lisosomas/metabolismo , Neuraminidasa/química , Ácidos Siálicos
3.
Sci Rep ; 13(1): 338, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611064

RESUMEN

Myb-like SWIRM and MPN domains 1 (MYSM1) is a chromatin binding protein with deubiquitinase (DUB) catalytic activity. Rare MYSM1 mutations in human patients result in an inherited bone marrow failure syndrome, highlighting the biomedical significance of MYSM1 in the hematopoietic system. We and others characterized Mysm1-knockout mice as a model of this disorder and established that MYSM1 regulates hematopoietic function and leukocyte development in such models through different mechanisms. It is, however, unknown whether the DUB catalytic activity of MYSM1 is universally required for its many functions and for the maintenance of hematopoiesis in vivo. To test this, here we generated a new mouse strain carrying a Mysm1D660N point mutation (Mysm1DN) and demonstrated that the mutation renders MYSM1 protein catalytically inactive. We characterized Mysm1DN/DN and Mysm1fl/DN CreERT2 mice, against appropriate controls, for constitutive and inducible loss of MYSM1 catalytic function. We report a profound similarity in the developmental, hematopoietic, and immune phenotypes resulting from the loss of MYSM1 catalytic function and the full loss of MYSM1 protein. Overall, our work for the first time establishes the critical role of MYSM1 DUB catalytic activity in vivo in hematopoiesis, leukocyte development, and other aspects of mammalian physiology.


Asunto(s)
Endopeptidasas , Proteasas Ubiquitina-Específicas , Humanos , Ratones , Animales , Endopeptidasas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Diferenciación Celular , Hematopoyesis/genética , Mutación , Células Madre Hematopoyéticas/metabolismo , Ratones Noqueados , Mamíferos/metabolismo , Transactivadores/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(33): e2203518119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939698

RESUMEN

The mannose-6-phosphate (M6P) pathway is responsible for the transport of hydrolytic enzymes to lysosomes. N-acetylglucosamine-1-phosphotransferase (GNPT) catalyzes the first step of tagging these hydrolases with M6P, which when recognized by receptors in the Golgi diverts them to lysosomes. Genetic defects in the GNPT subunits, GNPTAB and GNPTG, cause the lysosomal storage diseases mucolipidosis types II and III. To better understand its function, we determined partial three-dimensional structures of the GNPT complex. The catalytic domain contains a deep cavity for binding of uridine diphosphate-N-acetylglucosamine, and the surrounding residues point to a one-step transfer mechanism. An isolated structure of the gamma subunit of GNPT reveals that it can bind to mannose-containing glycans in different configurations, suggesting that it may play a role in directing glycans into the active site. These findings may facilitate the development of therapies for lysosomal storage diseases.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Manosafosfatos , Mucolipidosis , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Dominio Catalítico , Humanos , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/enzimología , Manosafosfatos/metabolismo , Mucolipidosis/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
5.
Sci Adv ; 7(20)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33980489

RESUMEN

The enzymes ß-galactosidase (GLB1) and neuraminidase 1 (NEU1; sialidase 1) participate in the degradation of glycoproteins and glycolipids in the lysosome. To remain active and stable, they associate with PPCA [protective protein cathepsin A (CTSA)] into a high-molecular weight lysosomal multienzyme complex (LMC), of which several forms exist. Genetic defects in these three proteins cause the lysosomal storage diseases GM1-gangliosidosis/mucopolysaccharidosis IV type B, sialidosis, and galactosialidosis, respectively. To better understand the interactions between these enzymes, we determined the three-dimensional structure of the murine LMC core. This 0.8-MDa complex is composed of three GLB1 dimers and three CTSA dimers, adopting a triangular architecture maintained through six copies of a unique GLB1-CTSA polar interface. Mutations in this contact surface that occur in GM1-gangliosidosis prevent formation of the LMC in vitro. These findings may facilitate development of therapies for lysosomal storage disorders.

6.
Protein Sci ; 29(10): 2054-2061, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32767432

RESUMEN

The ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) are a family of enzymes found on the cell surface and in the lumen of certain organelles, that are major regulators of purinergic signaling. Their intracellular roles, however, have not been clearly defined. NTPDase4 (UDPase, ENTPD4) is a Golgi protein potentially involved in nucleotide recycling as part of protein glycosylation, and is also found in lysosomes, where its purpose is unknown. To further our understanding of NTPDase4 function, we determined its crystal structure. The enzyme adopts a wide open, inactive conformation. Differences in the nucleotide-binding site relative to its homologs could account for its substrate selectivity. The putative membrane-interacting loop of cell-surface NTPDases is drastically altered in NTPDase4, potentially affecting its interdomain dynamics at the Golgi membrane.


Asunto(s)
Pirofosfatasas/química , Animales , Cristalografía por Rayos X , Humanos , Dominios Proteicos , Estructura Secundaria de Proteína , Células Sf9 , Spodoptera
7.
J Biol Chem ; 295(33): 11682-11692, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32571875

RESUMEN

Phosphatases of regenerating liver (PRLs) are markers of cancer and promote tumor growth. They have been implicated in a variety of biochemical pathways but the physiologically relevant target of phosphatase activity has eluded 20 years of investigation. Here, we show that PRL3 catalytic activity is not required in a mouse model of metastasis. PRL3 binds and inhibits CNNM4, a membrane protein associated with magnesium transport. Analysis of PRL3 mutants specifically defective in either CNNM-binding or phosphatase activity demonstrate that CNNM binding is necessary and sufficient to promote tumor metastasis. As PRLs do have phosphatase activity, they are in fact pseudo-pseudophosphatases. Phosphatase activity leads to formation of phosphocysteine, which blocks CNNM binding and may play a regulatory role. We show levels of PRL cysteine phosphorylation vary in response to culture conditions and in different tissues. Examination of related protein phosphatases shows the stability of phosphocysteine is a unique and evolutionarily conserved property of PRLs. The demonstration that PRL3 functions as a pseudophosphatase has important ramifications for the design of PRL inhibitors for cancer.


Asunto(s)
Carcinogénesis/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Células COS , Carcinogénesis/genética , Carcinogénesis/patología , Chlorocebus aethiops , Femenino , Células HEK293 , Células HeLa , Humanos , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/genética , Magnesio/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Modelos Moleculares , Mutación , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/genética
8.
Structure ; 28(4): 426-436.e3, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32109365

RESUMEN

Most lysosomal hydrolytic enzymes reach their destination via the mannose-6-phosphate (M6P) pathway. The enzyme N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase (NAGPA, or "uncovering enzyme") catalyzes the second step in the M6P tag formation, namely the removal of the masking N-acetylglucosamine (GlcNAc) portion. Defects in this protein are associated with non-syndromic stuttering. To gain a better understanding of the function and regulation of this enzyme, we determined its crystal structure. The propeptide binds in a groove on the globular catalytic domain, blocking active site access. High-affinity substrate binding is enabled by a conformational switch in an active site loop. The protein recognizes the GlcNAc and phosphate portions of its substrate, but not the mannose moiety of the glycan. Based on enzymatic and 1H-NMR analysis, a catalytic mechanism is proposed. Crystallographic and solution scattering analyses suggest that the C-terminal domain forms a long flexible stem that extends the enzyme away from the Golgi membrane.


Asunto(s)
Dominio Catalítico , Hidrolasas Diéster Fosfóricas/química , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Animales , Cristalografía por Rayos X , Humanos , Manosafosfatos/química , Manosafosfatos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Células Sf9 , Spodoptera
9.
J Med Chem ; 62(2): 987-992, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30525581

RESUMEN

Human acid ceramidase (AC) is a lysosomal cysteine amidase, which has received a great deal of interest in recent years as a potential target for the development of new therapeutics against melanoma and glioblastoma tumors. Despite the strong interest in obtaining structural information, only the structures of the apo-AC enzyme in its zymogen and activated conformations are available. In this work, the crystal structure of AC in complex with the covalent carmofur inhibitor is presented. Carmofur is an antineoplastic drug containing an electrophilic carbonyl reactive group that targets the catalytic cysteine. This novel structural data explains the basis of the AC inhibition, provides insights into the enzymatic properties of the protein, and is a great aid toward the structure-based drug design of potent inhibitors for AC, providing the detailed mechanism, which has eluded the scientific community for more than 30 years, of carmofur's mysterious 5-fluorouracil-independent antitumor activity.


Asunto(s)
Ceramidasa Ácida/antagonistas & inhibidores , Antineoplásicos/química , Fluorouracilo/análogos & derivados , Simulación de Dinámica Molecular , Ceramidasa Ácida/genética , Ceramidasa Ácida/metabolismo , Antineoplásicos/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Fluorouracilo/química , Fluorouracilo/metabolismo , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
10.
FEBS J ; 286(7): 1319-1331, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30552791

RESUMEN

ß-Mannosidase is a lysosomal enzyme from the glycosyl hydrolase family 2 that cleaves the single ß(1-4)-linked mannose at the nonreducing end of N-glycosylated proteins, and plays an important role in the polysaccharide degradation pathway. Mutations in the MANBA gene, which encodes the ß-mannosidase, can lead to the lysosomal storage disease ß-mannosidosis, as well as nystagmus, an eye condition characterized by involuntary eye movements. Here, we present the first structures of a mammalian ß-mannosidase in both the apo- and mannose-bound forms. The structure is similar to previously determined ß-mannosidase structures with regard to domain organization and fold, however, there are important differences that underlie substrate specificity between species. Additionally, in contrast to most other ligand-bound ß-mannosidases from bacterial and fungal sources where bound sugars were in a boat-like conformation, we find the mannose in the chair conformation. Evaluation of known disease mutations in the MANBA gene provides insight into their impact on disease phenotypes. Together, these results will be important for the design of therapeutics for treating diseases caused by ß-mannosidase deficiency. DATABASE: Structural data are available in the Protein Data Bank under the accession numbers 6DDT and 6DDU.


Asunto(s)
Manosa/metabolismo , Mutación , Nistagmo Patológico/enzimología , beta-Manosidasa/química , beta-Manosidosis/enzimología , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Glicosilación , Humanos , Ratones , Nistagmo Patológico/genética , Nistagmo Patológico/patología , Fenotipo , Conformación Proteica , Homología de Secuencia , Especificidad por Sustrato , beta-Manosidasa/genética , beta-Manosidasa/metabolismo , beta-Manosidosis/genética , beta-Manosidosis/patología
11.
Proc Natl Acad Sci U S A ; 115(43): E10032-E10040, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30301806

RESUMEN

Palmitoylethanolamide is a bioactive lipid that strongly alleviates pain and inflammation in animal models and in humans. Its signaling activity is terminated through degradation by N-acylethanolamine acid amidase (NAAA), a cysteine hydrolase expressed at high levels in immune cells. Pharmacological inhibitors of NAAA activity exert profound analgesic and antiinflammatory effects in rodent models, pointing to this protein as a potential target for therapeutic drug discovery. To facilitate these efforts and to better understand the molecular mechanism of action of NAAA, we determined crystal structures of this enzyme in various activation states and in complex with several ligands, including both a covalent and a reversible inhibitor. Self-proteolysis exposes the otherwise buried active site of NAAA to allow catalysis. Formation of a stable substrate- or inhibitor-binding site appears to be conformationally coupled to the interaction of a pair of hydrophobic helices in the enzyme with lipid membranes, resulting in the creation of a linear hydrophobic cavity near the active site that accommodates the ligand's acyl chain.


Asunto(s)
Amidohidrolasas/metabolismo , Amidas , Analgésicos/farmacología , Animales , Dominio Catalítico/efectos de los fármacos , Línea Celular , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , Etanolaminas/metabolismo , Humanos , Inflamación/metabolismo , Ligandos , Ratones , Dolor/tratamiento farmacológico , Dolor/metabolismo , Ácidos Palmíticos/metabolismo , Conejos , Células Sf9 , Relación Estructura-Actividad
12.
FEBS J ; 285(13): 2481-2494, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29717535

RESUMEN

The ecto-nucleotide pyrophosphatase/phosphodiesterase (NPP) enzyme family modulates purinergic signaling by degrading extracellular nucleotides. CD203c (NPP3, ENPP3) regulates the inflammatory response of basophils via ATP hydrolysis and is a marker for allergen sensitivity on the surface of these cells. Multiple other roles and substrates have also been proposed for this protein. In order to gain insight into its molecular functions, we determined the crystal structure of human NPP3 as well as its complex with an ATP analog. The enzyme exhibits little preference for nucleobase type, and forms specific contacts with the alpha and beta phosphate groups of its ligands. Dimerization of the protein does not affect its catalytic activity. These findings expand our understanding of substrate recognition within the NPP family. DATABASE: Structural data are available in the Protein Data Bank under the accession numbers 6C01 (human NPP3) and 6C02 (human NPP3 T205A N594S with AMPCPP).


Asunto(s)
Nucleótidos/química , Hidrolasas Diéster Fosfóricas/química , Dominios Proteicos , Pirofosfatasas/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Nucleótidos/genética , Nucleótidos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Unión Proteica , Multimerización de Proteína , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Homología de Secuencia de Aminoácido , Células Sf9 , Spodoptera , Especificidad por Sustrato
13.
Nat Commun ; 9(1): 1621, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29692406

RESUMEN

Acid ceramidase (aCDase, ASAH1) hydrolyzes lysosomal membrane ceramide into sphingosine, the backbone of all sphingolipids, to regulate many cellular processes. Abnormal function of aCDase leads to Farber disease, spinal muscular atrophy with progressive myoclonic epilepsy, and is associated with Alzheimer's, diabetes, and cancer. Here, we present crystal structures of mammalian aCDases in both proenzyme and autocleaved forms. In the proenzyme, the catalytic center is buried and protected from solvent. Autocleavage triggers a conformational change exposing a hydrophobic channel leading to the active site. Substrate modeling suggests distinct catalytic mechanisms for substrate hydrolysis versus autocleavage. A hydrophobic surface surrounding the substrate binding channel appears to be a site of membrane attachment where the enzyme accepts substrates facilitated by the accessory protein, saposin-D. Structural mapping of disease mutations reveals that most would destabilize the protein fold. These results will inform the rational design of aCDase inhibitors and recombinant aCDase for disease therapeutics.


Asunto(s)
Ceramidasa Ácida/química , Ceramidasa Ácida/metabolismo , Lipogranulomatosis de Farber/enzimología , Atrofia Muscular Espinal/enzimología , Ceramidasa Ácida/genética , Sitios de Unión , Biocatálisis , Ceramidas/química , Ceramidas/metabolismo , Activación Enzimática , Lipogranulomatosis de Farber/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Atrofia Muscular Espinal/genética , Mutación , Pliegue de Proteína , Saposinas/genética , Saposinas/metabolismo , Esfingolípidos/química , Esfingolípidos/metabolismo
14.
Proc Natl Acad Sci U S A ; 115(5): E896-E905, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29343645

RESUMEN

LPS is a potent bacterial endotoxin that triggers the innate immune system. Proper recognition of LPS by pattern-recognition receptors requires a full complement of typically six acyl chains in the lipid portion. Acyloxyacyl hydrolase (AOAH) is a host enzyme that removes secondary (acyloxyacyl-linked) fatty acids from LPS, rendering it immunologically inert. This activity is critical for recovery from immune tolerance that follows Gram-negative infection. To understand the molecular mechanism of AOAH function, we determined its crystal structure and its complex with LPS. The substrate's lipid moiety is accommodated in a large hydrophobic pocket formed by the saposin and catalytic domains with a secondary acyl chain inserted into a narrow lateral hydrophobic tunnel at the active site. The enzyme establishes dispensable contacts with the phosphate groups of LPS but does not interact with its oligosaccharide portion. Proteolytic processing allows movement of an amphipathic helix possibly involved in substrate access at membranes.


Asunto(s)
Hidrolasas de Éster Carboxílico/química , Lipopolisacáridos/química , Animales , Calcio/química , Dominio Catalítico , Membrana Celular/metabolismo , Cristalografía por Rayos X , Endosomas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Sistema Inmunológico , Ratones , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Conejos , Saposinas/química , Dispersión de Radiación , Propiedades de Superficie , Rayos X
15.
FEBS J ; 284(21): 3718-3726, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28898552

RESUMEN

The ecto-nucleotide pyrophosphatase/phosphodiesterase (NPP) family of proteins mediates purinergic signaling by degrading extracellular nucleotides and also participates in phospholipid metabolism. NPP5 (ENPP5) is the least characterized member of this group and its specific role is unknown. This enzyme does not display activity on certain nucleotides and on other typical NPP substrates. In order to gain insights into its function, we determined the crystal structure of human and murine NPP5. Structural comparison with close homologs revealed a key phenylalanine to tyrosine substitution that prevents efficient hydrolysis of nucleotide diphosphates and triphosphates; reversal of this mutation enabled degradation of these molecules. Interestingly, NPP5 is able to cleave nicotinamide adenine dinucleotide (NAD), suggesting a potential role of this enzyme in NAD-based neurotransmission. An NPP5-specific metal binding motif is found adjacent to the active site, although its significance is unclear. These findings expand our understanding of substrate specificity within the NPP family. DATABASE: Structural data are available in the Protein Data Bank under the accession numbers 5VEM, 5VEN, and 5VEO.


Asunto(s)
NAD/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Tirosina/metabolismo , Animales , Cristalografía por Rayos X , Humanos , Hidrólisis , Ratones , Modelos Moleculares , NAD/química , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/química , Pirofosfatasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tirosina/química
16.
J Biol Chem ; 292(17): 7087-7094, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28292932

RESUMEN

Absorption of dietary sphingomyelin (SM) requires its initial degradation into ceramide, a process catalyzed by the intestinal enzyme alkaline sphingomyelinase (alk-SMase, NPP7, ENPP7). alk-SMase belongs to the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, the members of which hydrolyze nucleoside phosphates, phospholipids, and other related molecules. NPP7 is the only paralog that can cleave SM, and its activity requires the presence of bile salts, a class of physiological anionic detergents. To elucidate the mechanism of substrate recognition, we determined the crystal structure of human alk-SMase in complex with phosphocholine, a reaction product. Although the overall fold and catalytic center are conserved relative to other NPPs, alk-SMase recognizes the choline moiety of its substrates via an NPP7-specific aromatic box composed of tyrosine residues. Mutational analysis and enzymatic activity assays identified features on the surface of the protein-a cationic patch and a unique hydrophobic loop-that are essential for accessing SM in bile salt micelles. These results shed new light on substrate specificity determinants within the NPP enzyme family.


Asunto(s)
Esfingomielina Fosfodiesterasa/química , Animales , Ácidos y Sales Biliares/química , Catálisis , Dominio Catalítico , Cationes , Línea Celular , Cristalografía por Rayos X , Análisis Mutacional de ADN , Detergentes/química , Humanos , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Insectos , Micelas , Fosforilcolina/química , Unión Proteica , Señales de Clasificación de Proteína , Sales (Química)/química , Especificidad por Sustrato , Tirosina/química
17.
J Biol Chem ; 291(46): 24054-24064, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27687724

RESUMEN

The enzyme acid sphingomyelinase-like phosphodiesterase 3B (SMPDL3B) was shown to act as a negative regulator of innate immune signaling, affecting cellular lipid composition and membrane fluidity. Furthermore, several reports identified this enzyme as an off target of the therapeutic antibody rituximab, with implications in kidney disorders. However, structural information for this protein is lacking. Here we present the high resolution crystal structure of murine SMPDL3B, which reveals a substrate binding site strikingly different from its paralogs. The active site is located in a narrow boot-shaped cavity. We identify a unique loop near the active site that appears to impose size constraints on incoming substrates. A structure in complex with phosphocholine indicates that the protein recognizes this head group via an aromatic box, a typical choline-binding motif. Although a potential substrate for SMPDL3B is sphingomyelin, we identify other possible substrates such as CDP-choline, ATP, and ADP. Functional experiments employing structure-guided mutagenesis in macrophages highlight amino acid residues potentially involved in recognition of endogenous substrates. Our study is an important step toward elucidating the specific function of this poorly characterized enzyme.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/química , Adenosina Difosfato/química , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Colina/química , Colina/genética , Colina/metabolismo , Cristalografía por Rayos X , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Ratones , Dominios Proteicos , Estructura Secundaria de Proteína , Células Sf9 , Esfingomielinas/química , Esfingomielinas/genética , Esfingomielinas/metabolismo , Spodoptera , Especificidad por Sustrato
18.
Nat Commun ; 7: 12196, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27435900

RESUMEN

Acid sphingomyelinase (ASMase, ASM, SMPD1) converts sphingomyelin into ceramide, modulating membrane properties and signal transduction. Inactivating mutations in ASMase cause Niemann-Pick disease, and its inhibition is also beneficial in models of depression and cancer. To gain a better understanding of this critical therapeutic target, we determined crystal structures of mammalian ASMase in various conformations. The catalytic domain adopts a calcineurin-like fold with two zinc ions and a hydrophobic track leading to the active site. Strikingly, the membrane interacting saposin domain assumes either a closed globular conformation independent from the catalytic domain, or an open conformation, which establishes an interface with the catalytic domain essential for activity. Structural mapping of Niemann-Pick mutations reveals that most of them likely destabilize the protein's fold. This study sheds light on the molecular mechanism of ASMase function, and provides a platform for the rational development of ASMase inhibitors and therapeutic use of recombinant ASMase.


Asunto(s)
Mamíferos/metabolismo , Esfingomielina Fosfodiesterasa/química , Animales , Dominio Catalítico , Cristalografía por Rayos X , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Hidrólisis , Lípidos de la Membrana/metabolismo , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutación/genética , Enfermedades de Niemann-Pick/genética , Estructura Secundaria de Proteína , Saposinas/química , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/aislamiento & purificación , Esfingomielina Fosfodiesterasa/metabolismo , Electricidad Estática , Especificidad por Sustrato
19.
J Biol Chem ; 291(12): 6376-85, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26792860

RESUMEN

Sphingomyelin phosphodiesterase, acid-like 3A (SMPDL3A) is a member of a small family of proteins founded by the well characterized lysosomal enzyme, acid sphingomyelinase (ASMase). ASMase converts sphingomyelin into the signaling lipid, ceramide. It was recently discovered that, in contrast to ASMase, SMPDL3A is inactive against sphingomyelin and, surprisingly, can instead hydrolyze nucleoside diphosphates and triphosphates, which may play a role in purinergic signaling. As none of the ASMase-like proteins has been structurally characterized to date, the molecular basis for their substrate preferences is unknown. Here we report crystal structures of murine SMPDL3A, which represent the first structures of an ASMase-like protein. The catalytic domain consists of a central mixed ß-sandwich surrounded by α-helices. Additionally, SMPDL3A possesses a unique C-terminal domain formed from a cluster of four α-helices that appears to distinguish this protein family from other phosphoesterases. We show that SMDPL3A is a di-zinc-dependent enzyme with an active site configuration that suggests a mechanism of phosphodiester hydrolysis by a metal-activated water molecule and protonation of the leaving group by a histidine residue. Co-crystal structures of SMPDL3A with AMP and α,ß-methylene ADP (AMPCP) reveal that the substrate binding site accommodates nucleotides by establishing interactions with their base, sugar, and phosphate moieties, with the latter the major contributor to binding affinity. Our study provides the structural basis for SMPDL3A substrate specificity and sheds new light on the function of ASMase-like proteins.


Asunto(s)
Adenosina Monofosfato/química , Esfingomielina Fosfodiesterasa/química , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Animales , Biocatálisis , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Humanos , Hidrólisis , Cinética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Especificidad por Sustrato , Zinc/química
20.
Cell Rep ; 4(2): 362-75, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23871671

RESUMEN

A key feature in Huntington disease (HD) is the accumulation of mutant Huntingtin (HTT) protein, which may be regulated by posttranslational modifications. Here, we define the primary sites of SUMO modification in the amino-terminal domain of HTT, show modification downstream of this domain, and demonstrate that HTT is modified by the stress-inducible SUMO-2. A systematic study of E3 SUMO ligases demonstrates that PIAS1 is an E3 SUMO ligase for both HTT SUMO-1 and SUMO-2 modification and that reduction of dPIAS in a mutant HTT Drosophila model is protective. SUMO-2 modification regulates accumulation of insoluble HTT in HeLa cells in a manner that mimics proteasome inhibition and can be modulated by overexpression and acute knockdown of PIAS1. Finally, the accumulation of SUMO-2-modified proteins in the insoluble fraction of HD postmortem striata implicates SUMO-2 modification in the age-related pathogenic accumulation of mutant HTT and other cellular proteins that occurs during HD progression.


Asunto(s)
Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Drosophila , Femenino , Células HeLa , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Datos de Secuencia Molecular , Mutación , Proteínas Inhibidoras de STAT Activados/genética , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Transfección , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...