Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
2.
Front Oncol ; 14: 1377858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651145

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2023.1206768.].

3.
Front Oncol ; 13: 1206768, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324026

RESUMEN

Background: Despite the high prevalence of lung cancer, with a five-year survival rate of only 23%, the underlying molecular mechanisms of non-small cell lung cancer (NSCLC) remain unknown. There is a great need to identify reliable candidate biomarker genes for early diagnosis and targeted therapeutic strategies to prevent cancer progression. Methods: In this study, four datasets obtained from the Gene Expression Omnibus were evaluated for NSCLC- associated differentially expressed genes (DEGs) using bioinformatics analysis. About 10 common significant DEGs were shortlisted based on their p-value and FDR (DOCK4, ID2, SASH1, NPR1, GJA4, TBX2, CD24, HBEGF, GATA3, and DDR1). The expression of significant genes was validated using experimental data obtained from TCGA and the Human Protein Atlas database. The human proteomic data for post- translational modifications was used to interpret the mutations in these genes. Results: Validation of DEGs revealed a significant difference in the expression of hub genes in normal and tumor tissues. Mutation analysis revealed 22.69%, 48.95%, and 47.21% sequence predicted disordered regions of DOCK4, GJA4, and HBEGF, respectively. The gene-gene and drug-gene network analysis revealed important interactions between genes and chemicals suggesting they could act as probable drug targets. The system-level network showed important interactions between these genes, and the drug interaction network showed that these genes are affected by several types of chemicals that could serve as potential drug targets. Conclusions: The study demonstrates the importance of systemic genetics in identifying potential drug- targeted therapies for NSCLC. The integrative system- level approach should contribute to a better understanding of disease etiology and may accelerate drug discovery for many cancer types.

4.
Front Pharmacol ; 13: 1048691, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467041

RESUMEN

The length of the telomeres is maintained with the help of the enzyme telomerase constituting of two components, namely, a core reverse transcriptase protein (hTERT) and RNA (hTR). It serves as a significant and universal cancer target. In silico approaches play a crucial role in accelerating drug development processes, especially cancer drug repurposing is an attractive approach. The current study is aimed at the repurposing of FDA-approved drugs for their potential role as hTERT inhibitors. Accordingly, a library of 2,915 sets of FDA-approved drugs was generated from the ZINC database in order to screen for novel hTERT inhibitors; later on, these were subjected to molecular docking analysis. The top two hits, ZINC03784182 and ZINC01530694, were shortlisted for molecular dynamic simulation studies at 100 ns based on their binding scores. The RMSD, RMSF, Rg, SASA, and interaction energies were calculated for a 100-ns simulation period. The hit compounds were also analyzed for antitumor activity, and the results revealed promising cytotoxic activities of these compounds. The study has revealed the potential application of these drugs as antitumor agents that can be useful in treating cancer and can serve as lead compounds for further in vivo, in vitro, and clinical studies.

5.
Front Oncol ; 12: 1014156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237320

RESUMEN

Lung cancer is one of the deadliest types of cancer responsible for thousands of cancer-related deaths. Its treatment has remained a challenge for researchers, but an increase in the knowledge of molecular pathways and biology of lung cancer has dramatically changed its management in recent decades. Immunotherapies and immunomodulation of lung cancer have previously failed for a long time but thanks to continuous research work and enthusiasm, now, this field is emerging as a novel effective therapy. Now, it is hope with potential benefits and promising results in the treatment of lung cancer. This review article focuses on immune checkpoints inhibitors: CTLA-4 inhibitors (ipilimumab and tremelimumab) and PDL-1 inhibitors (durvalumab and atezolizumab) that can be blocked to treat lung carcinoma. It is also focused on critically analyzing different studies and clinical trials to determine the potential benefits, risks, and adverse events associated with immunotherapeutic treatment.

6.
Front Pharmacol ; 13: 962095, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278240

RESUMEN

The gastrointestinal tract (GIT) and the liver constitute the major organs of the human body. Indeed, the very survival of the human body depends on their proper functioning. Because the GIT is a huge and complex organ system, the maintenance of proper GIT and liver health is an arduous task. GIT disturbances such as diarrhea, stomach ache, flatulence, constipation, nausea, and vomiting are very common, and they contribute to a significant burden on the healthcare system. Pharmacies are full of over-the-counter pharmacological drugs to alleviate its common conditions. However, these drugs do not always prove to be fully effective and patients have to keep on living with these ailments without a proper and long-term solution. The aim of this review article is to present a practical reference guide to the role of herbal medicines in dealing with gastrointestinal and hepatic disorders, which is supported by systematic reviews and evidence-based trials. People have depended on herbal medications for centuries for the treatment of various ailments of the GIT, liver, and other organ system problems. Recently, this trend of incorporating herbal medication for the treatment of various diseases in both developing and developed countries have surged. Many people continue to use herbal medications, even though substantial data about their efficacy, uses, and toxicological effects do not exist. In addition, while herbal medicines have enormous benefits in both the prevention and the treatment of medical ailments, they can also have toxicological effects. It is, therefore, of the utmost importance that appropriate time, energy, and resources are spent on the development of ethnopharmacology. In addition, herbal products should be classified in a pattern similar to pharmacological medications, including their uses, side effects, mechanism of action, efficacy, and so on.

7.
Front Endocrinol (Lausanne) ; 13: 1022623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313779

RESUMEN

In an attempt to find new targets for α-amylase and α-glucosidase for the treatment of type 2 diabetes mellitus, the present study aims in determining the anti-diabetic potential of synthesized dihydropyrimidinone derivatives. The in vitro α-glucosidase and α-amylase inhibitory activity was performed and the molecular docking analysis of the ligand in the active binding site of target protein was determined. The results revealed significant percent inhibition of α-glucosidase by the compound 6-benzyl-4-(4-hydroxyphenyl)-3,4,6,7-tetrahydro-1H-pyrrolo[3,4-d]pyrimidine-2,5-dione (compound A). The active compound showed 81.99% inhibition when compared to standard ascorbic acid having percent inhibition 81.18%. The IC50 of active compound (A) showed to be 1.02 µg/ml. The molecular docking analysis revealed that the ligand bound to the active binding site of protein with the lowest binding energy of -7.9 kcal/mol that was also significantly similar to standard having -7.8 kcal/mol binding energy. The molecular dynamic simulation studies also revealed stable binding of ligand in the active binding site of protein with low RMSD of 1.7 Å similar to the protein RMSD 1.6Å In conclusion, the study revealed a potential new target against α-glucosidase to treat type 2 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 2 , alfa-Glucosidasas , Humanos , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Ligandos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , alfa-Amilasas/metabolismo
8.
J Oncol ; 2022: 4022960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185622

RESUMEN

Glioblastoma multiforme is a serious and life-threatening tumor of central nervous system, characterized by aggressive behavior, poor prognosis, and low survival rate. Despite of the availability of aggressive antitumor therapeutic regimen for glioblastoma (radiotherapy followed by chemotherapeutic dose), recovery rate, and patients' survival ratio is attributed to the lack of selectivity of therapeutic drugs and less advancement in cancer therapeutics over last decade. Moreover, tools employed in conventional diagnosis of glioblastoma are more invasive and painful, making the process excruciating for the patients. These challenges urge for the need of novel biomarkers for diagnosis, prognosis, and prediction purpose with less invasiveness and more patient compliance. This article will explore the genetic biomarkers isocitrate dehydrogenase mutation, MGMT mutations, and EGFR that can be deployed as an analytical tool in diagnosis of disease and prognosis of a therapeutic course. The review also highlights the importance of employing novel microRNAs as prognostic biomarkers. Recent clinical advancements to treat GBM and to prevent relapse of the disease are also discussed in this article in the hope of finding a robust and effective method to treat GBM.

9.
Front Endocrinol (Lausanne) ; 13: 985857, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051390

RESUMEN

Aims/introduction: Due to the heterogeneous nature of type 2 diabetes mellitus and its complex effects on hemodynamics, there is a need to identify new candidate markers which are involved in the development of type 2 diabetes mellitus (DM) and can serve as potential targets. As the global diabetes prevalence in 2019 was estimated as 9.3% (463 million people), rising to 10.2% (578 million) by 2030 and 10.9% (700 million) by 2045, the need to limit this rapid prevalence is of concern. The study aims to identify the possible biomarkers of type 2 diabetes mellitus with the help of the system biology approach using R programming. Materials and methods: Several target proteins that were found to be associated with the source genes were further curated for their role in type 2 diabetes mellitus. The differential expression analysis provided 50 differentially expressed genes by pairwise comparison between the biologically comparable groups out of which eight differentially expressed genes were short-listed. These DEGs were as follows: MCL1, PTX3, CYP3A4, PTGS1, SSTR2, SERPINA3, TDO2, and GALNT7. Results: The cluster analysis showed clear differences between the control and treated groups. The functional relationship of the signature genes showed a protein-protein interaction network with the target protein. Moreover, several transcriptional factors such as DBX2, HOXB7, POU3F4, MSX2, EBF1, and E4F1 showed association with these identified differentially expressed genes. Conclusions: The study highlighted the important markers for diabetes mellitus that have shown interaction with other proteins having a role in the progression of diabetes mellitus that can serve as new targets in the management of DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Biomarcadores , Análisis por Conglomerados , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Factores del Dominio POU/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética
10.
Front Pharmacol ; 13: 934156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903327

RESUMEN

Pioglitazone (PGZ) is utilized as a therapeutic agent in the management of (type 2) diabetes to control blood glucose levels. The existing research work was intended to make and optimize PGZ-containing NLCs (nanostructured lipid carriers). The fabricated nanostructured lipid carrier preparation was optimized by using different concentrations of the surfactants (Tween 80 and Span 80) and solid lipid (Compritol® 888 ATO) and liquid lipid (Labrasol®) while keeping the concentration of drug (PGZ), and co-surfactants (poloxamer 188) the same. The optimized NLC formulation (PGZ-NLCs) was further assessed for physical and chemical characterization, in vitro PGZ release, and stability studies. The optimized PGZ-NLCs have shown an average diameter of 150.4 nm, EE of 92.53%, PDI value of 0.076, and zeta-potential of -29.1 mV, correspondingly. The DSC thermal analysis and XRD diffractograms had not presented the spectrum of PGZ, confirming the comprehensive encapsulation of PGZ in the lipid core. PGZ-NLCs showed significantly extended release (51% in 24 h) compared to the unformulated PGZ. Our study findings confirmed that PGZ-NLCs can be a promising drug delivery system for the treatment of type 2 diabetes.

11.
J Oncol ; 2022: 7715689, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35509846

RESUMEN

The diverse pharmacological role of dihydropyrimidinone scaffold has made it to be an interesting drug target. Because of the high incidence and mortality rate of breast cancer, there is a dire need of discovering new pharmacotherapeutic agents in managing this disease. A series of twenty-two derivatives of 6-(chloromethyl)-4-(4-hydroxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (3a-3k) and ethyl 6-(chloromethyl)-4-(2-hydroxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4a-4k) synthesized in a previous study were evaluated for their anticancer potential against breast cancer cell line. Molecular docking studies were performed to analyze the binding mode and interaction pattern of these compounds against nine breast cancer target proteins. The in vitro cell proliferation assay was performed against the breast cancer cell line MCF-7. The structure activity relationship of these compounds was further studied using QSARINS. Among nine proteins, the docking analysis revealed efficient binding of compounds 4f, 4e, 3e, 4g, and 4h against all target proteins. The in vitro cytotoxic assay revealed significant anticancer activity of compound 4f having IC50 of 2.15 µM. The compounds 4e, 3e, 4g, and 4h also showed anticancer activities with IC50 of 2.401, 2.41, 2.47 and 2.33 µM, respectively. The standard tamoxifen showed IC50 1.88 µM. The 2D qualitative structure-activity relationship (QSAR) analysis was also carried out to identify potential breast cancer targets through QSARINS. The final QSAR equation revealed good predictivity and statistical validation R 2 and Q 2 values for the model obtained from QSARINS was 0.98 and 0.97, respectively. The active compounds showed very good anticancer activities, and the binding analysis has revealed stable hydrogen bonding of these compounds with the target proteins. Moreover, the QSAR analysis has predicted useful information on the structural requirement of these compounds as anticancer agents with the importance of topological and autocorrelated descriptors in effecting the cancer activities.

12.
ACS Omega ; 7(8): 7139-7154, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35252705

RESUMEN

The presence of alkaline phosphatases has been observed in several species and has been known to play a crucial role in various biological functions. Higher expressions of alkaline phosphatase have been found in several multifactorial disorders and cancer patients, which has led it to be an interesting target for drug discovery. A strong structural similarity exists between intestinal alkaline phosphatases (IAPs) and tissue-nonspecific alkaline phosphatases (TNAPs), which has led to the discovery of only a few selective inhibitors. Therefore, a series of 22 derivatives of 6-(chloromethyl)-4-(4-hydroxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (1) and ethyl 6-(chloromethyl)-4-(2-hydroxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (2) were synthesized to evaluate the anticancer potential of these compounds against breast cancer. The compounds were characterized through spectral and elemental analyses. The inhibitory effect of dihydropyrimidinone derivatives on alkaline phosphatases was evaluated using the calf alkaline phosphatase assay. The antioxidant activity of these compounds was performed to study the radical scavenging effect. In silico molecular docking and molecular dynamic simulations were performed to elucidate the binding mode of active compounds. Moreover, the two-dimensional qualitative-structure-activity relationship (2D-QSAR) was performed to study the structural requirements for enzyme inhibition. The calf alkaline phosphatase inhibitory assay revealed significant inhibition of the enzyme by compound 4d with IC50 1.27 µM at 0.1 mM concentration as compared to standard KH2PO4 having IC50 2.80 µM. The compounds 4f, 4e, and 4i also showed very good inhibition with IC50 values of 2.502, 2.943, and 2.132 µM, respectively, at the same concentration. The antioxidant assay revealed efficient radical scavenging activity of compounds 4f, 4e, and 4g at 100 µg/mL with IC50 values of 0.48, 0.61, and 0.75 µg/mL, respectively. The molecular docking and simulation studies revealed efficient binding of active compounds in the active binding site of the target enzyme. The final QSAR equation revealed good predictivity and statistical validation having R 2 = 0.958 and Q 2 = 0.903, respectively, for the generated model. The compound 4d showed the highest inhibitory activity with stable binding modes acting as a future lead for identifying alkaline phosphatase inhibitors. The molecular simulations suggested the stable binding of this compound, and the QSAR studies revealed the importance of autocorrelated descriptors in the inhibition of alkaline phosphatase. The investigated compounds may serve as potential pharmacophores for potent and selective alkaline phosphatase inhibitors. We intend to further investigate the biological activities of these compounds as alkaline phosphatase inhibitors.

13.
Anticancer Agents Med Chem ; 22(14): 2599-2606, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34963435

RESUMEN

BACKGROUND: The development of resistance to available anticancer drugs is increasingly becoming a major challenge and new chemical entities could be unveiled to compensate for this therapeutic failure. OBJECTIVES: The current study demonstrated whether N-protected and deprotected amino acid derivatives of 2- aminopyridine could attenuate tumor development using colorectal cancer cell lines. METHODS: Biological assays were performed to investigate the anticancer potential of synthesized compounds. The in silico ADME profiling and docking studies were also performed by docking the designed compounds against the active binding site of beta-catenin (CTNNB1) to analyze the binding mode of these compounds. Four derivatives 4a, 4b, 4c, and 4d were selected for investigation of in vitro anticancer potential using colorectal cancer cell line HCT 116. The anti-tumor activities of synthesized compounds were further validated by evaluating the inhibitory effects of these compounds on the target protein beta-catenin through in vitro enzyme inhibitory assay. RESULTS: The docking analysis revealed favorable binding energies and interactions with the target proteins. The in vitro MTT assay on colorectal cancer cell line HCT 116 and HT29 revealed potential anti-tumor activities with an IC50 range of 3.7-8.1µM and 3.27-7.7 µM, respectively. The inhibitory properties of these compounds on the concentration of beta-catenin by ELISA revealed significant percent inhibition of target protein at 100 µg/ml. CONCLUSION: In conclusion, the synthesized compounds showed significant anti-tumor activities both in silico and in vitro, having potential for further investigating its role in colorectal cancer.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Aminopiridinas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , beta Catenina
14.
Pak J Pharm Sci ; 34(4(Supplementary)): 1509-1517, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34799326

RESUMEN

Due to the emerging mortality rate of colorectal cancer there is a high need for the management and control of this disease. Although several treatment approaches are being developed day by day yet the high incidence rate of colorectal cancer is still not controlled. To ease in the development of treatment therapies for colorectal cancer two derivatives of ethyl 2-aminothiazole 4-carboxylate were designed and synthesized. The compounds Ethyl 2-(2-(1,3-dioxoisoindolin-2-yl)acetamido)thiazole-4-carboxylate (5a) and ethyl 2-(2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropanamido)thiazole-4-carboxylate (5b) were characterized and studied for their anti-cancer activities. The in silico molecular modeling studies were performed against the target protein beta-catenin which is an important player in the progression of colorectal cancer. The in silico ADMET studies were performed to assess the basic physicochemical properties of these compounds. The in vitro antiproliferative assay and the enzyme inhibitory assay was performed to validate the role of these compounds in the colorectal cancer. The preliminary cytotoxic assay and the MTT assay of the compounds 5a and 5b against the colorectal cancer cell line HCT 116 showed 60% inhibition of cell proliferation with IC50 of 0.72µM and 1.55µM, respectively. The standard methotrexate showed IC50 of 0.7µM showing potent inhibitory action of these compounds. The in vitro validation of the anti-cancer effect of both compounds revealed significant inhibition of beta-catenin concentration at higher doses as compared to control. Both the in vitro and in vivo assays of compounds showed effective anti-cancer activities and depicts the future potential of these compounds in colorectal cancer.


Asunto(s)
Aminoácidos/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Diseño de Fármacos , Tiazoles/química , Animales , Antineoplásicos/farmacocinética , Artemia , Neoplasias Colorrectales/tratamiento farmacológico , Células HCT116 , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Conformación Proteica
15.
J Inflamm Res ; 14: 5659-5679, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754213

RESUMEN

OBJECTIVE: The study investigated the effect 5-[(naphthalen-2-yloxy) methyl]-1,3,4-oxadiaszole2-thiol (B3) in animal model of acute epileptic shock. METHODS: The pharmacokinetics profile of B3 was checked through SwissADME software. The binding affinities of B3, diazepam, and flumazenil (FLZ) were obtained through Auto Dock and PyRx. Post docking analysis and interpretation of hydrogen bonds were performed through Discovery Studio Visualizer 2016. Molecular dynamics simulations of three complexes were carried out through Desmond software package. B3 was then proceeded in PTZ-induced acute seizures models. Flumazenil was used in animal studies for elucidation of possible mechanism of B3. After behavioral studies, the animals were sacrificed, and the brain samples were isolated and stored in 4% formalin for molecular investigations including H and E staining, IHC staining and Elisa etc. RESULTS: The results demonstrate that B3 at 20 and 40 mg/kg prolonged the onset time of generalized seizures. B3 considerably increased the expression of protective glutathione S-transferase and glutathione reductase and reduced lipid peroxidation and inducible nitric oxide synthase (P < 0.001) in the cortex. B3 significantly suppressed (P < 0.01) the over expression of the inflammatory mediator tumor necrosis factor-α, whose up-regulation is reported in acute epileptic shocks. CONCLUSION: Hence, it is concluded from the aforementioned results that B3 provides neuroprotective effects PTZ-induced acute epileptic model. FLZ pretreatment resulted in inhibition of the anticonvulsant effect of B3. B3 possesses anticonvulsant effect which may be mediated through GABAA mediated antiepileptic pathway.

16.
J Biol Res (Thessalon) ; 28(1): 5, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33593445

RESUMEN

BACKGROUND: Because of the highly heterogeneous nature of breast cancer, each subtype differs in response to several treatment regimens. This has limited the therapeutic options for metastatic breast cancer disease requiring exploration of diverse therapeutic models to target tumor specific biomarkers. METHODS: Differentially expressed breast cancer genes identified through extensive data mapping were studied for their interaction with other target proteins involved in breast cancer progression. The molecular mechanisms by which these signature genes are involved in breast cancer metastasis were also studied through pathway analysis. The potential drug targets for these genes were also identified. RESULTS: From 50 DEGs, 20 genes were identified based on fold change and p-value and the data curation of these genes helped in shortlisting 8 potential gene signatures that can be used as potential candidates for breast cancer. Their network and pathway analysis clarified the role of these genes in breast cancer and their interaction with other signaling pathways involved in the progression of disease metastasis. The miRNA targets identified through miRDB predictor provided potential miRNA targets for these genes that can be involved in breast cancer progression. Several FDA approved drug targets were identified for the signature genes easing the therapeutic options for breast cancer treatment. CONCLUSION: The study provides a more clarified role of signature genes, their interaction with other genes as well as signaling pathways. The miRNA prediction and the potential drugs identified will aid in assessing the role of these targets in breast cancer.

17.
Brain Sci ; 10(10)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066162

RESUMEN

The production and up-regulation of inflammatory mediators are contributing factors for the development and maintenance of neuropathic pain. In the present study, the post-treatment of synthetic 1,3,4 oxadiazole derivative (B3) for its neuroprotective potential in chronic constriction injury-induced neuropathic pain was applied. In-silico studies were carried out through Auto Dock, PyRx, and DSV to obtain the possible binding and interactions of the ligands (B3) with COX-2, IL-6, and iNOS. The sciatic nerve of the anesthetized rat was constricted with sutures 3/0. Treatment with 1,3,4-oxadiazole derivative was started a day after surgery and continued until the 14th day. All behavioral studies were executed on day 0, 3rd, 7th, 10th, and 14th. The sciatic nerve and spinal cord were collected for further molecular analysis. The interactions in the form of hydrogen bonding stabilizes the ligand target complex. B3 showed three hydrogen bonds with IL-6. B3, in addition to correcting paw posture/deformation induced by CCI, attenuates hyperalgesia (p < 0.001) and allodynia (p < 0.001). B3 significantly raised the level of GST and GSH in both the sciatic nerve and spinal cord and reduced the LPO and iNOS (p < 0.001). B3 attenuates the pathological changes induced by nerve injury, which was confirmed by H&E staining and IHC examination. B3 down-regulates the over-expression of the inflammatory mediator IL-6 and hence provides neuroprotective effects in CCI-induced pain. The results demonstrate that B3 possess anti-nociceptive and anti-hyperalgesic effects and thus minimizes pain perception and inflammation. The possible underlying mechanism for the neuroprotective effect of B3 probably may be mediated through IL-6.

19.
J Biol Res (Thessalon) ; 27: 8, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32523911

RESUMEN

BACKGROUND: Colorectal cancer is known to be the most common type of cancer worldwide with high disease-related mortality. It is the third most common cancer in men and women and is the second major cause of death globally due to cancer. It is a complicated and fatal disease comprising of a group of molecular heterogeneous disorders. RESULTS: This study identifies the potential biomarkers of CRC through differentially expressed analysis, system biology, and proteomic analysis. Ten publicly available microarray datasets were analyzed and seven potential biomarkers were identified from the list of differentially expressed genes having a p value < 0.05. The expression profiling and the functional enrichment analysis revealed the role of these genes in cell communication, signal transduction, and immune response. The protein-protein interaction showed the functional association of the source genes (CTNNB1, NNMT, PTCH1, CALD1, CXCL14, CXCL8, and TNFAIP3) with the target proteins, such as AXIN, MAPK, IL6, STAT, APC, GSK3B, and SHH. CONCLUSION: The integrated pathway analysis indicated the role of these genes in important physiological responses, such as cell cycle regulation, WNT, hedgehog, MAPK, and calcium signaling pathways during colorectal cancer. These pathways are involved in cell proliferation, chemotaxis, cellular growth, differentiation, tissue patterning, and cytokine production. The study shows the regulatory role of these genes in colorectal cancer and the pathways that can be effected after the dysregulation of these genes.

20.
Pak J Pharm Sci ; 30(6): 2271-2279, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29175800

RESUMEN

Methicillin resistant Staphylococcus aureus (MRSA) is resistant to known antibiotics and has become a great challenge for healthcare professionals, therefore new molecules are needed to manage this situation. In this study, new lead molecules 4-Amino-5-(2-Hydroxyphenyl)-1,2,4-Triazol-3-Thione (U1) and4-(2-hydroxybenzalidine) amine-5-(2-hydroxy) phenyl-1,2,4-triazole-3-thiol(U1A Schiff base) were synthesized by fusion method that showed promising antibacterial activity (U1A: 26mm and U1: 14mm) against MRSA.FT-IR and NMR were used for structural characterization of these derivatives and their toxicity properties were assessed by Lipinski's rule of 5. New potential drug targets of this bacterium were also identified by comparative and subtraction genomics techniques. In particular, octanoyl-[GcvH]: protein N-octanoyl transferase and phosphor mevalonate kinase were used as potential targets in AutoDock Vina studies. This study can provide a framework to find potential drug targets for other pathogenic microorganisms that can successfully be docked with compound U1 and U1A.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Diseño Asistido por Computadora , Diseño de Fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Triazoles/síntesis química , Triazoles/farmacología , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Antibacterianos/farmacocinética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Espectroscopía de Resonancia Magnética , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Simulación del Acoplamiento Molecular , Estructura Molecular , Terapia Molecular Dirigida/métodos , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Triazoles/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...