Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 368: 453-465, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447812

RESUMEN

Fibroblasts (hDFs) are widely employed for skin regeneration and the treatment of various skin disorders, yet research were rarely investigated about restoration of diminished therapeutic efficacy due to cell senescence. The application of stem cell and stem cell-derived materials, exosomes, were drawn attention for the restoration functionality of fibroblasts, but still have limitation for unintended side effect or low yield. To advance, stem cell-derived nanovesicle (NV) have developed for effective therapeutic reagents with high yield and low risk. In this study, we have developed a method using red light irradiated human adipose-derived stem cells (hADSCs) derived NV (R-NVs) for enhancing the therapeutic efficacy and rejuvenating hDFs. Through red light irradiation, we were able to significantly increase the content of stemness factors and angiogenic biomolecules in R-NVs. Treatment with these R-NVs was found to enhance the migration ability and leading to rejuvenation of old hDFs to levels similar to those of young hDFs. In subsequent in vivo experiments, the treatment of old hDFs with R-NVs demonstrated a superior skin wound healing effect, surpassing that of young hDFs. In summary, this study successfully induced rejuvenation and leading to increased therapeutic efficacy to R-NVs treated old hDFs previously considered as biowaste.


Asunto(s)
Luz Roja , Rejuvenecimiento , Humanos , Recuperación de la Función , Células Madre , Fibroblastos
2.
Biosens Bioelectron ; 249: 116017, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262299

RESUMEN

The enzymatic actions of endonucleases in vivo can be altered due to bound substrates and differences in local environments, including enzyme concentration, pH, salinity, ionic strength, and temperature. Thus, accurate estimation of enzymatic reactions in vivo using matrix-dependent methods in solution can be challenging. Here, we report a matrix-insensitive magnetic biosensing platform that enables the measurement of endonuclease activity under different conditions with varying pH, salinity, ionic strength, and temperature. Using biosensor arrays and orthogonal pairs of oligonucleotides, we quantitatively characterized the enzymatic activity of EcoRI under different buffer conditions and in the presence of inhibitors. To mimic a more physiological environment, we monitored the sequence-dependent star activity of EcoRI under unconventional conditions. Furthermore, enzymatic activity was measured in cell culture media, saliva, and serum. Last, we estimated the effective cleavage rates of Cas12a on anchored single-strand DNAs using this platform, which more closely resembles in vivo settings. This platform will facilitate precise characterization of restriction and Cas endonucleases under various conditions.


Asunto(s)
Técnicas Biosensibles , Endonucleasas , Desoxirribonucleasa EcoRI/metabolismo , Endonucleasas/metabolismo , Oligonucleótidos , Cinética , Fenómenos Magnéticos , Enzimas de Restricción del ADN/metabolismo
3.
Commun Biol ; 5(1): 957, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100628

RESUMEN

Conditioned medium (CM) contains various therapeutic molecules produced by cells. However, the low concentration of therapeutic molecules in CM is a major challenge for successful tissue regeneration. Here, we aim to develop a CM enriched in angiogenic paracrine factors for the treatment of ischemic diseases. Combining spheroidal culture and light irradiation significantly upregulates the angiogenic factor expression in human adipose-derived stem cells (hADSCs). Spheroids of light-irradiated hADSCs (SR group) show significantly enhanced expression of angiogenic paracrine factors compared with spheroids without light stimulation. Enhanced viability, migration, and angiogenesis are observed in cells treated with CM derived from the SR group. Furthermore, we performed in vivo experiments using a mouse hindlimb ischemia model; the results demonstrate that CM derived from densely cultured spheroids of light-irradiated hADSCs induced increased angiogenesis in vivo. In conclusion, our proposed approach of using light to stimulate stem cells may overcome the major drawbacks of CM-based therapies.


Asunto(s)
Adipocitos , Tejido Adiposo , Inductores de la Angiogénesis , Animales , Medios de Cultivo Condicionados/farmacología , Humanos , Isquemia/terapia , Neovascularización Patológica , Células Madre
4.
Mikrochim Acta ; 189(7): 256, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35697882

RESUMEN

A strategy is reported to improve the detection limits of current giant magnetoresistance (GMR) biosensors by augmenting the effective magnetic moment that the magnetic tags on the biosensors can exert. Magnetic supercluster particles (MSPs), each of which consists of ~ 1000 superparamagnetic cores, are prepared by a wet-chemical technique and are utilized to improve the limit of detection of GMR biosensors down to 17.6 zmol for biotin as a target molecule. This value is more than four orders of magnitude lower than that of the conventional colorimetric assay performed using the same set of reagents except for the signal transducer. The applicability of MSPs in immunoassay is further demonstrated by simultaneously detecting vascular endothelial growth factor (VEGF) and C-reactive protein (CRP) in a duplex assay format. MSPs outperform commercially available magnetic nanoparticles in terms of signal intensity and detection limit.


Asunto(s)
Técnicas Biosensibles , Factor A de Crecimiento Endotelial Vascular , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Fenómenos Magnéticos , Magnetismo/métodos
5.
Tissue Eng Regen Med ; 19(1): 49-57, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34674183

RESUMEN

BACKGROUND: Enhancing blood flow and cell proliferation in the hair dermis is critical for treating hair loss. This study was designed to aid the development of alternative and effective solutions to overcome alopecia. Specifically, we examined the effects of Morus alba. L root extract (MARE, which has been used in traditional medicine as a stimulant for hair proliferation) on dermal fibroblasts and other cell types found in the epidermis. METHODS: We first optimized the concentration of MARE that could be used to treat human dermal fibroblasts (HDFs) without causing cytotoxicity. After optimization, we focused on the effect of MARE on HDFs since these cells secrete paracrine factors related to cell proliferation and angiogenesis that affect hair growth. Conditioned medium (CM) derived from MARE-treated HDFs (MARE HDF-CM) was used to treat human umbilical vein endothelial cells (HUVECs) and hair follicle dermal papilla cells (HFDPCs). RESULTS: Concentrations of MARE up to 20 wt% increased the expression of proliferative and anti-apoptotic genes in HDFs. MARE HDF-CM significantly improved the tubular structure formation and migration capacity of HUVECs. Additionally, MARE HDF-CM treatment upregulated the expression of hair growth-related genes in HFDPCs. CM collected from MARE-treated HDFs promoted the proliferation of HFDPCs and the secretion of angiogenic paracrine factors from these cells. CONCLUSION: Since it can stimulate the secretion of pro-proliferative and pro-angiogenic paracrine factors from HDFs, MARE has therapeutic potential as a hair loss preventative.


Asunto(s)
Morus , Células Endoteliales , Fibroblastos , Folículo Piloso , Humanos , Extractos Vegetales/farmacología
6.
Pharmaceutics ; 13(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34452116

RESUMEN

Restoring hair follicles by inducing the anagen phase is a promising approach to prevent hair loss. Hair follicle dermal papilla cells (HFDPCs) play a major role in hair growth via the telogen-to-anagen transition. The therapeutic effect of Morus alba activates ß-catenin in HFDPCs, thereby inducing the anagen phase. The HFDPCs were treated with M. alba root extract (MARE) to promote hair growth. It contains chlorogenic acid and umbelliferone and is not cytotoxic to HFDPCs at a concentration of 20%. It was demonstrated that a small amount of MARE enhances growth factor secretion (related to the telogen-to-anagen transition). Activation of ß-catenin was observed in MARE-treated HFDPCs, which is crucial for inducing the anagen phase. The effect of conditioned medium derived from MARE-treated HFDPCs on keratinocytes and endothelial cells was also investigated. The findings of this study demonstrate the potency of MARE in eliciting the telogen-to-anagen transition.

7.
J Tissue Eng ; 12: 20417314211067004, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987748

RESUMEN

Comprehensive research has led to significant preclinical outcomes in modified human adipose-derived mesenchymal stem cells (hADSCs). Photobiomodulation (PBM), a technique to enhance the cellular capacity of stem cells, has attracted considerable attention owing to its effectiveness and safety. Here, we suggest a red organic light-emitting diode (OLED)-based PBM strategy to augment the therapeutic efficacy of hADSCs. In vitro assessments revealed that hADSCs basked in red OLED light exhibited enhanced angiogenesis, cell adhesion, and migration compared to naïve hADSCs. We demonstrated that the enhancement of cellular capacity was due to an increased level of intracellular reactive oxygen species. Furthermore, accelerated healing and regulated inflammatory response was observed in mice transplanted with red light-basked hADSCs. Overall, our findings suggest that OLED-based PBM may be an easily accessible and attractive approach for tissue regeneration that can be applied to various clinical stem cell therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...