Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 20(11): 5901-5909, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37860991

RESUMEN

Mucopolysaccharidoses (MPSs) make up a group of lysosomal storage diseases characterized by the aberrant accumulation of glycosaminoglycans throughout the body. Patients with MPSs display various signs and symptoms, such as retinopathy, which is also observed in patients with MPS II. Unfortunately, retinal disorders in MPS II are resistant to conventional intravenous enzyme-replacement therapy because the blood-retinal barrier (BRB) impedes drug penetration. In this study, we show that a fusion protein, designated pabinafusp alfa, consisting of an antihuman transferrin receptor antibody and iduronate-2-sulfatase (IDS), crosses the BRB and reaches the retina in a murine model of MPS II. We found that retinal function, as assessed by electroretinography (ERG) in MPS II mice, deteriorated with age. Early intervention with repeated intravenous treatment of pabinafusp alfa decreased heparan sulfate deposition in the retina, optic nerve, and visual cortex, thus preserving or even improving the ERG response in MPS II mice. Histological analysis further revealed that pabinafusp alfa mitigated the loss of the photoreceptor layer observed in diseased mice. In contrast, recombinant nonfused IDS failed to reach the retina and hardly affected the retinal disease. These results support the hypothesis that transferrin receptor-targeted IDS can penetrate the BRB, thereby ameliorating retinal dysfunction in MPS II.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Enfermedades de la Retina , Animales , Ratones , Barrera Hematorretinal/metabolismo , Glicosaminoglicanos , Iduronato Sulfatasa/metabolismo , Iduronato Sulfatasa/uso terapéutico , Ácido Idurónico , Mucopolisacaridosis II/tratamiento farmacológico , Mucopolisacaridosis II/diagnóstico , Receptores de Transferrina , Enfermedades de la Retina/tratamiento farmacológico
2.
Mol Ther Methods Clin Dev ; 29: 439-449, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37251981

RESUMEN

Mucopolysaccharidosis I (MPS I), a lysosomal storage disease caused by dysfunction of α-L-iduronidase (IDUA), is characterized by the deposition of dermatan sulfate (DS) and heparan sulfate (HS) throughout the body, which causes several somatic and central nervous symptoms. Although enzyme-replacement therapy (ERT) is currently available to treat MPS I, it does not alleviate central nervous disorders, as it cannot penetrate the blood-brain barrier. Here we evaluate the brain delivery, efficacy, and safety of JR-171, a fusion protein comprising humanized anti-human transferrin receptor antibody Fab and IDUA, using monkeys and MPS I mice. Intravenously administered JR-171 was distributed in major organs, including the brain, and reduced DS and HS concentrations in the central nervous system and peripheral tissues. JR-171 exerted similar effects on peripheral disorders similar to conventional ERT and further reversed brain pathology in MPS I mice. We found that JR-171 improved spatial learning ability, which was seen to deteriorate in the vehicle-treated mice. Further, no safety concerns were noted in repeat-dose toxicity studies in monkeys. This study provides nonclinical evidence that JR-171 might potentially prevent and even improve disease conditions in patients with neuronopathic MPS I without serious safety concerns.

3.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36233030

RESUMEN

Heparan sulfate (HS) is an essential glycosaminoglycan (GAG) as a component of proteoglycans, which are present on the cell surface and in the extracellular matrix. HS-containing proteoglycans not only function as structural constituents of the basal lamina but also play versatile roles in various physiological processes, including cell signaling and organ development. Thus, inherited mutations of genes associated with the biosynthesis or degradation of HS can cause various diseases, particularly those involving the bones and central nervous system (CNS). Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders involving GAG accumulation throughout the body caused by a deficiency of GAG-degrading enzymes. GAGs are stored differently in different types of MPSs. Particularly, HS deposition is observed in patients with MPS types I, II, III, and VII, all which involve progressive neuropathy with multiple CNS system symptoms. While therapies are available for certain symptoms in some types of MPSs, significant unmet medical needs remain, such as neurocognitive impairment. This review presents recent knowledge on the pathophysiological roles of HS focusing on the pathogenesis of MPSs. We also discuss the possible use and significance of HS as a biomarker for disease severity and therapeutic response in MPSs.


Asunto(s)
Mucopolisacaridosis , Mucopolisacaridosis I , Biomarcadores , Glicosaminoglicanos , Proteoglicanos de Heparán Sulfato , Heparitina Sulfato/metabolismo , Humanos , Mucopolisacaridosis/patología
4.
Mol Ther Methods Clin Dev ; 25: 534-544, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35662814

RESUMEN

Deposition of heparan sulfate (HS) in the brain of patients with mucopolysaccharidosis II (MPS II) is believed to be the leading cause of neurodegeneration, resulting in several neurological signs and symptoms, including neurocognitive impairment. We recently showed that pabinafusp alfa, a blood-brain-barrier-penetrating fusion protein consisting of iduronate-2-sulfatase and anti-human transferrin receptor antibody, stabilized learning ability by preventing the deposition of HS in the CNS of MPS II mice. We further examined the dose-dependent effect of pabinafusp alfa on neurological function in relation to its HS-reducing efficacy in a mouse model of MPS II. Long-term intravenous treatment with low (0.1 mg/kg), middle (0.5 mg/kg), and high (2.0 mg/kg) doses of the drug dose-dependently decreased HS concentration in the brain and cerebrospinal fluid (CSF). A comparable dose-dependent effect in the prevention of neuronal damage in the CNS, and dose-dependent improvements in neurobehavioral performance tests, such as gait analysis, pole test, Y maze, and Morris water maze, were also observed. Notably, the water maze test performance was inversely correlated with the HS levels in the brain and CSF. This study provides nonclinical evidence substantiating a quantitative dose-dependent relationship between HS reduction in the CNS and neurological improvements in MPS II.

5.
Mol Genet Metab Rep ; 27: 100758, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33981582

RESUMEN

Pabinafusp alfa is a fusion protein comprising a humanized anti-human transferrin receptor (TfR) antibody and human iduronate-2-sulfatase. It was developed as a novel modality to target central nervous system-related symptoms observed in patients with mucopolysaccharidosis type II (MPS II, also known as Hunter syndrome). As the fusion protein contains an entire IgG1 molecule that binds TfR, there may be specific safety concerns, such as unexpected cellular toxicity due to its effector functions or its ability to inhibit iron metabolism, in addition to general safety concerns. Here, we present the comprehensive results of a nonclinical safety assessment of pabinafusp alfa. Pabinafusp alfa did not exhibit effector functions, as assessed by antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity studies in TfR-expressing hematopoietic cells. Repeat-dose toxicity studies in cynomolgus monkeys showed that pabinafusp alfa did not induce any significant toxicological changes at doses up to 30 mg/kg/week upon intravenous administration for up to 26 weeks. Interaction of transferrin with TfR was not inhibited by pabinafusp alfa, suggesting that the effect of pabinafusp alfa on the physiological iron transport system is minimal, which was confirmed by toxicity studies in cynomolgus monkeys. These findings suggest that pabinafusp alfa is expected to be safe for long-term use in individuals with MPS II.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...