Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Methods ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811857

RESUMEN

Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. PdCO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.

2.
Nat Commun ; 14(1): 8434, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114457

RESUMEN

Neuromodulatory signaling via G protein-coupled receptors (GPCRs) plays a pivotal role in regulating neural network function and animal behavior. The recent development of optogenetic tools to induce G protein-mediated signaling provides the promise of acute and cell type-specific manipulation of neuromodulatory signals. However, designing and deploying optogenetically functionalized GPCRs (optoXRs) with accurate specificity and activity to mimic endogenous signaling in vivo remains challenging. Here we optimize the design of optoXRs by considering evolutionary conserved GPCR-G protein interactions and demonstrate the feasibility of this approach using two Drosophila Dopamine receptors (optoDopRs). These optoDopRs exhibit high signaling specificity and light sensitivity in vitro. In vivo, we show receptor and cell type-specific effects of dopaminergic signaling in various behaviors, including the ability of optoDopRs to rescue the loss of the endogenous receptors. This work demonstrates that optoXRs can enable optical control of neuromodulatory receptor-specific signaling in functional and behavioral studies.


Asunto(s)
Receptores Dopaminérgicos , Receptores Acoplados a Proteínas G , Animales , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Proteínas de Unión al GTP/metabolismo , Drosophila/genética , Drosophila/metabolismo
3.
Elife ; 112022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409070

RESUMEN

Neurons sensing harmful mechanical forces in the larvae of fruit flies have a striking architecture of dendrites that are optimized to detect pointy objects.


Asunto(s)
Drosophila , Neuronas , Animales , Larva , Sensación
4.
STAR Protoc ; 3(4): 101787, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36317171

RESUMEN

Two-choice assays allow assessing of different behaviors including light avoidance in Drosophila larvae. Typically, the readout is limited to a preference index at a specific end point. We provide a detailed protocol to set up light avoidance assays and map the temporal distribution of larvae based on analysis of larval intensities. We describe the assay setup and implementation of scripts for analysis, which can be easily adapted to other two-choice assays and different model organisms. For complete details on the use and execution of this protocol, please refer to Imambocus et al. (2022).


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Larva , Bioensayo
5.
Curr Biol ; 32(1): 149-163.e8, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34798050

RESUMEN

Animals display selective escape behaviors when faced with environmental threats. Selection of the appropriate response by the underlying neuronal network is key to maximizing chances of survival, yet the underlying network mechanisms are so far not fully understood. Using synapse-level reconstruction of the Drosophila larval network paired with physiological and behavioral readouts, we uncovered a circuit that gates selective escape behavior for noxious light through acute and input-specific neuropeptide action. Sensory neurons required for avoidance of noxious light and escape in response to harsh touch, each converge on discrete domains of neuromodulatory hub neurons. We show that acute release of hub neuron-derived insulin-like peptide 7 (Ilp7) and cognate relaxin family receptor (Lgr4) signaling in downstream neurons are required for noxious light avoidance, but not harsh touch responses. Our work highlights a role for compartmentalized circuit organization and neuropeptide release from regulatory hubs, acting as central circuit elements gating escape responses.


Asunto(s)
Proteínas de Drosophila , Neuropéptidos , Animales , Drosophila/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Larva/fisiología , Neuropéptidos/genética , Nociceptores/fisiología , Células Receptoras Sensoriales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...