Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 19(5): 1116-1124, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38695893

RESUMEN

Borosins are ribosomally synthesized and post-translationally modified peptides (RiPPs) containing backbone α-N-methylations. These modifications confer favorable pharmacokinetic properties including increased membrane permeability and resistance to proteolytic degradation. Previous studies have biochemically and bioinformatically explored several borosins, revealing (1) numerous domain architectures and (2) diverse core regions lacking conserved sequence elements. Due to these characteristics, large-scale computational identification of borosin biosynthetic genes remains challenging and often requires additional, time-intensive manual inspection. This work builds upon previous findings and updates the genome-mining tool RODEO to automatically evaluate borosin biosynthetic gene clusters (BGCs) and identify putative precursor peptides. Using the new RODEO module, we provide an updated analysis of borosin BGCs identified in the NCBI database. From our data set, we bioinformatically predict and experimentally characterize a new fused borosin domain architecture, in which the modified natural product core is encoded N-terminal to the methyltransferase domain. Additionally, we demonstrate that a borosin precursor peptide is a native substrate of shewasin A, a reported aspartyl peptidase with no previously identified substrates. Shewasin A requires post-translational modification of the leader peptide for proteolytic maturation, a feature not previously observed in RiPPs. Overall, this work provides a user-friendly and open-access tool for the analysis of borosin BGCs and we demonstrate its utility to uncover additional biosynthetic strategies within the borosin class of RiPPs.


Asunto(s)
Biología Computacional , Procesamiento Proteico-Postraduccional , Biología Computacional/métodos , Familia de Multigenes , Secuencia de Aminoácidos , Péptidos/química , Péptidos/metabolismo
2.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38260703

RESUMEN

Borosins are ribosomally synthesized and post-translationally modified peptides containing backbone α- N -methylations. Identification of borosin precursor peptides is difficult because (1) there are no conserved sequence elements among borosin precursor peptides and (2) the biosynthetic gene clusters contain numerous domain architectures and peptide fusions. To tackle this problem, we updated the genome mining tool RODEO to automatically evaluate putative borosin BGCs and identify precursor peptides. Enabled by the new borosin module, we analyzed all borosin BGCs found in available sequence data and assigned precursor peptides to previously orphan borosin methyltransferases. Additionally, we bioinformatically predict and experimentally characterize a new fused borosin domain architecture, in which the modified core is N-terminal to the methyltransferase domain. Finally, we demonstrate that a borosin precursor peptide is the native substrate of shewasin A, a previously characterized pepsin-like aspartic peptidase whose native biological function was unknown.

3.
ACS Chem Biol ; 17(4): 908-917, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35297605

RESUMEN

Borosins are ribosomally synthesized and post-translationally modified peptides (RiPPs) with α-N-methylations installed on the peptide backbone that impart unique properties like proteolytic stability to these natural products. The borosin RiPP family was initially reported only in fungi until our recent discovery and characterization of a Type IV split borosin system in the metal-respiring bacterium Shewanella oneidensis. Here, we used hidden Markov models and sequence similarity networks to identify over 1600 putative pathways that show split borosin biosynthetic gene clusters are widespread in bacteria. Noteworthy differences in precursor and α-N-methyltransferase open reading frame sizes, architectures, and core peptide properties allow further subdivision of the borosin family into six additional discrete structural types, of which five have been validated in this study.


Asunto(s)
Productos Biológicos , Ribosomas , Productos Biológicos/química , Metilación , Familia de Multigenes , Péptidos/química , Procesamiento Proteico-Postraduccional , Ribosomas/genética , Ribosomas/metabolismo
4.
J Am Chem Soc ; 141(24): 9637-9644, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31117659

RESUMEN

Backbone N-methylations impart several favorable characteristics to peptides including increased proteolytic stability and membrane permeability. Nonetheless, amide bond N-methylations incorporated as post-translational modifications are scarce in nature and were first demonstrated in 2017 for a single set of fungal metabolites. Here we expand on our previous discovery of iterative, autocatalytic α- N-methylating precursor proteins in the borosin family of ribosomally encoded peptide natural products. We identify over 50 putative pathways in a variety of ascomycete and basidiomycete fungi and functionally validate nearly a dozen new self-α- N-methylating catalysts. Significant differences in precursor size, architecture, and core peptide properties subdivide this new peptide family into three discrete structural types. Lastly, using targeted genomics, we link the biosynthetic origins of the potent antineoplastic gymnopeptides to the borosin natural product family. This work highlights the metabolic potential of fungi for ribosomally synthesized peptide natural products.


Asunto(s)
Productos Biológicos/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Metiltransferasas/metabolismo , Péptidos Cíclicos/biosíntesis , Secuencia de Aminoácidos , Biocatálisis , Productos Biológicos/química , Proteínas Fúngicas/genética , Hongos/genética , Genómica , Metilación , Metiltransferasas/genética , Familia de Multigenes , Péptidos Cíclicos/química , Péptidos Cíclicos/genética , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Ribosomas/metabolismo
5.
Sci Adv ; 4(8): eaat2720, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30151425

RESUMEN

The peptide bond, the defining feature of proteins, governs peptide chemistry by abolishing nucleophilicity of the nitrogen. This and the planarity of the peptide bond arise from the delocalization of the lone pair of electrons on the nitrogen atom into the adjacent carbonyl. While chemical methylation of an amide bond uses a strong base to generate the imidate, OphA, the precursor protein of the fungal peptide macrocycle omphalotin A, self-hypermethylates amides at pH 7 using S-adenosyl methionine (SAM) as cofactor. The structure of OphA reveals a complex catenane-like arrangement in which the peptide substrate is clamped with its amide nitrogen aligned for nucleophilic attack on the methyl group of SAM. Biochemical data and computational modeling suggest a base-catalyzed reaction with the protein stabilizing the reaction intermediate. Backbone N-methylation of peptides enhances their protease resistance and membrane permeability, a property that holds promise for applications to medicinal chemistry.


Asunto(s)
Amidas/metabolismo , Metiltransferasas/metabolismo , Nitrógeno/metabolismo , Fragmentos de Péptidos/metabolismo , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Catálisis , Cristalografía por Rayos X , Electrones , Metilación , Metiltransferasas/química , Nitrógeno/química , Fragmentos de Péptidos/química , Conformación Proteica , S-Adenosilhomocisteína/química , S-Adenosilmetionina/química
6.
Synth Syst Biotechnol ; 3(2): 81-82, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29900419
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...