Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38409546

RESUMEN

Atezolizumab (TECENTRIQ®) and nivolumab (OPDIVO®) are both immunotherapeutic indications targeting programmed cell death 1 ligand 1 (PD-L1) and programmed cell death 1 (PD-1), respectively. These inhibitors hold promise as therapies for triple-negative breast cancer (TNBC) and hepatocellular carcinoma (HCC) and have demonstrated encouraging results in reducing the progression and spread of tumors. However, due to their adverse effects and low response rates, the US Food and Drug Administration (FDA) has withdrawn the approval of atezolizumab in TNBC and nivolumab in HCC treatment. The withdrawals of atezolizumab and nivolumab have raised concerns regarding their effectiveness and the ability to predict treatment responses. Therefore, the current study aims to investigate the immunotherapy withdrawal of PD-1/PD-L1 inhibitors, specifically atezolizumab for TNBC and nivolumab for HCC. This study will examine both the structural and clinical aspects. This review provides detailed insights into the structure of the PD-1 receptor and its ligands, the interactions between PD-1 and PD-L1, and their interactions with the withdrawn antibodies (atezolizumab and nivolumab) as well as PD-1 and PD-L1 modifications. In addition, this review further assesses these antibodies in the context of TNBC and HCC. It seeks to elucidate the factors that contribute to diverse responses to PD-1/PD-L1 therapy in different types of cancer and propose approaches for predicting responses, mitigating the potential risks linked to therapy withdrawals, and optimizing patient outcomes. By better understanding the mechanisms underlying responses to PD-1/PD-L1 therapy and developing strategies to predict these responses, it is possible to create more efficient treatments for TNBC and HCC.

2.
NPJ Vaccines ; 9(1): 14, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238340

RESUMEN

Recently, chemically synthesized minimal mRNA (CmRNA) has emerged as a promising alternative to in vitro transcribed mRNA (IVT-mRNA) for cancer therapy and immunotherapy. CmRNA lacking the untranslated regions and polyadenylation exhibits enhanced stability and efficiency. Encapsulation of CmRNA within lipid-polymer hybrid nanoparticles (LPPs) offers an effective approach for personalized neoantigen mRNA vaccines with improved control over tumor growth. LPP-based delivery systems provide superior pharmacokinetics, stability, and lower toxicity compared to viral vectors, naked mRNA, or lipid nanoparticles that are commonly used for mRNA delivery. Precise customization of LPPs in terms of size, surface charge, and composition allows for optimized cellular uptake, target specificity, and immune stimulation. CmRNA-encoded neo-antigens demonstrate high translational efficiency, enabling immune recognition by CD8+ T cells upon processing and presentation. This perspective highlights the potential benefits, challenges, and future directions of CmRNA neoantigen vaccines in cancer therapy compared to Circular RNAs and IVT-mRNA. Further research is needed to optimize vaccine design, delivery, and safety assessment in clinical trials. Nevertheless, personalized LPP-CmRNA vaccines hold great potential for advancing cancer immunotherapy, paving the way for personalized medicine.

3.
Bioorg Chem ; 142: 106974, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984103

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) serves as a critical cofactor in cellular metabolism and redox reactions. Bacterial pathways rely on NAD+ participation, where its stability and concentration govern essential homeostasis and functions. This review delves into the role and metabolic regulation of NAD+ in bacteria, highlighting its influence on physiology and virulence. Notably, we explore enzymes linked to NAD+ metabolism as antibacterial drug targets and vaccine candidates. Moreover, we scrutinize NAD+'s medical potential, offering insights for its application in biomedicine. This comprehensive assessment informs future research directions in the dynamic realm of NAD+ and its biomedical significance.


Asunto(s)
Bacterias , NAD , NAD/metabolismo , Oxidación-Reducción , Homeostasis , Bacterias/metabolismo
4.
Diagnostics (Basel) ; 13(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37958206

RESUMEN

Cytomegalovirus (CMV) infection is a highly prevalent opportunistic infection among liver transplant recipients. When the liver donor is infected with CMV, there is a risk of transmission to the recipient, leading to CMV infection. To improve the postoperative outcome of liver transplantation, it is crucial to shift the focus of CMV detection to the donor and achieve early diagnosis, as well as implement effective preventative and therapeutic measures. However, the commonly used CMV detection methods in the past had limitations that prevented their early and accurate diagnosis in liver transplant donors. This review focuses on the latest advancements in CMV detection methods that can potentially be applied to liver transplant donors. The objective is to compare and evaluate their clinical utility, thereby providing guidance and support for rapid and accurate diagnosis of CMV infection in the clinic. The clustered regularly interspaced short palindromic repeats-associated proteins (CRISPR-Cas) system-based assay emerges as a promising method for detecting the virus, offering great prospects for early and expedient CMV infection diagnosis in clinical settings.

5.
Tumour Biol ; 45(1): 127-146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37980588

RESUMEN

BACKGROUND: Hotspot mutations occurring in the p110α domain of the PIK3CA gene, specifically p110αH1047R/L increase tumor metastasis and cell motility in triple-negative breast cancer (TNBC). These mutations also affect the transcriptional regulation of ΔNp63α, a significant isoform of the p53 protein involved in cancer progression. This study attempts to investigate the transcriptional impact of p110αH1047R/L mutations on the PIK3CA/ΔNp63α complex in TNBC carcinogenesis. METHODS: We performed site-directed mutagenesis to introduce p110αH1047R/L mutations and evaluated their oncogenic effects on the growth, invasion, migration, and apoptosis of three different TNBC cell lines in vitro. We investigated the impact of these mutations on the p110α/ΔNp63α complex and downstream transcriptional signaling pathways at the gene and protein levels. Additionally, we used bioinformatics techniques such as molecular dynamics simulations and protein-protein docking to gain insight into the stability and structural changes induced by the p110αH1047R/L mutations in the p110α/ΔNp63α complex and downstream signaling pathway. RESULTS: The presence of PIK3CA oncogenic hotspot mutations in the p110α/ΔNp63α complex led to increased scattering of TNBC cells during growth, migration, and invasion. Our in vitro mutagenesis assay showed that the p110αH1047R/L mutations activated the PI3K-Akt-mTOR and tyrosine kinase receptor pathways, resulting in increased cell proliferation, invasion, and apoptosis in TNBC cells. These mutations decreased the repressing effect of ΔNp63α on the p110α kinase domain, leading to the enhancement of downstream signaling pathways of PI3K and tyrosine kinase receptors and oncogenic transformation in TNBC. Additionally, our findings suggest that the physical interaction between the DNA binding domain of ΔNp63α and the kinase domain of p110α may be partially impaired, potentially leading to alterations in the conformation of the p110α/ΔNp63α complex. CONCLUSION: Our findings suggest that targeting the p110αH1047R/L mutations in TNBC could be a promising strategy for developing transcriptional-based therapies. Restoring the interaction between ΔNp63α and the p110α kinase domain, which is disrupted by these mutations, may provide a new approach to treating TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Fosfatidilinositol 3-Quinasas , Mutación , Transducción de Señal/genética , Fosfatidilinositol 3-Quinasa Clase I/genética
6.
Cancers (Basel) ; 15(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37835417

RESUMEN

MicroRNA (miRNA) are small noncoding RNAs that play vital roles in post-transcriptional gene regulation by inhibiting mRNA translation or promoting mRNA degradation. The dysregulation of miRNA has been implicated in numerous human diseases, including cancers. miR-34 family members (miR-34s), including miR-34a, miR-34b, and miR-34c, have emerged as the most extensively studied tumor-suppressive miRNAs. In this comprehensive review, we aim to provide an overview of the major signaling pathways and gene networks regulated by miR-34s in various cancers and highlight the critical tumor suppressor role of miR-34s. Furthermore, we will discuss the potential of using miR-34 mimics as a novel therapeutic approach against cancer, while also addressing the challenges associated with their development and delivery. It is anticipated that gaining a deeper understanding of the functions and mechanisms of miR-34s in cancer will greatly contribute to the development of effective miR-34-based cancer therapeutics.

7.
Front Mol Biosci ; 10: 1260883, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808520

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are widely used as gene editing tools in biology, microbiology, and other fields. CRISPR is composed of highly conserved repetitive sequences and spacer sequences in tandem. The spacer sequence has homology with foreign nucleic acids such as viruses and plasmids; Cas effector proteins have endonucleases, and become a hotspot in the field of molecular diagnosis because they recognize and cut specific DNA or RNA sequences. Researchers have developed many diagnostic platforms with high sensitivity, high specificity, and low cost by using Cas proteins (Cas9, Cas12, Cas13, Cas14, etc.) in combination with signal amplification and transformation technologies (fluorescence method, lateral flow technology, etc.), providing a new way for rapid detection of pathogen nucleic acid. This paper introduces the biological mechanism and classification of CRISPR-Cas technology, summarizes the existing rapid detection technology for pathogen nucleic acid based on the trans cleavage activity of Cas, describes its characteristics, functions, and application scenarios, and prospects the future application of this technology.

8.
Biomed Pharmacother ; 167: 115564, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37748408

RESUMEN

The escalating misuse and excessive utilization of antibiotics have led to the widespread dissemination of drug-resistant bacteria, posing a significant global healthcare crisis. Of particular concern is the increasing prevalence of multi-drug resistant (MDR) opportunistic pathogens in Intensive Care Units (ICUs), which presents a severe threat to public health and contributes to substantial morbidity and mortality. Among them, MDR ESKAPE pathogens account for the vast majority of these opportunistic pathogens. This comprehensive review provides a meticulous analysis of the current prevalence landscape of MDR opportunistic pathogens in ICUs, especially in ESKAPE pathogens, illuminating their resistance mechanisms against commonly employed first-line antibiotics, including polymyxins, carbapenems, and tigecycline. Furthermore, this review explores innovative strategies aimed at preventing and controlling the emergence and spread of resistance. By emphasizing the urgent need for robust measures to combat nosocomial infections caused by MDR opportunistic pathogens in ICUs, this study serves as an invaluable reference for future investigations in the field of antibiotic resistance.

9.
PLoS One ; 18(7): e0285806, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37432950

RESUMEN

To discover vulnerabilities associated with dermokine (DMKN) as a new trigger of the epithelial-mesenchymal transition (EMT) -driven melanoma, we undertook a genome-wide genetic screening using transgenic. Here, we showed that DMKN expression could be constitutively increased in human malignant melanoma (MM) and that this correlates with poor overall survival in melanoma patients, especially in BRAF-mutated MM samples. Furthermore, in vitro, knockdown of DMKN inhibited the cell proliferation, migration, invasion, and apoptosis of MM cancer cells by the activation of ERK/MAPK signaling pathways and regulator of STAT3 in downstream molecular. By interrogating the in vitro melanoma dataset and characterization of advanced melanoma samples, we found that DMKN downregulated the EMT-like transcriptional program by disrupting EMT cortical actin, increasing the expression of epithelial markers, and decreasing the expression of mesenchymal markers. In addition, whole exome sequencing was presented with p.E69D and p.V91A DMKN mutations as a novel somatic loss of function mutations in those patients. Moreover, our purposeful proof-of-principle modeled the interaction of ERK with p.E69D and p.V91A DMKN mutations in the ERK-MAPK kinas signaling that may be naturally associated with triggering the EMT during melanomagenesis. Altogether, these findings provide preclinical evidence for the role of DMKN in shaping the EMT-like melanoma phenotype and introduced DMKN as a new exceptional responder for personalized MM therapy.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Transición Epitelial-Mesenquimal/genética , Melanoma/genética , Mutación , Neoplasias Cutáneas/genética , Melanoma Cutáneo Maligno
10.
3 Biotech ; 13(6): 166, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37162806

RESUMEN

Inherited retinal dystrophies (IRDs) include a large chronic heterogeneity genetic disease. While many disease-causing pathogenic variants were involved in the progression of IRD, the Ceramide Kinase Like (CERKL) gene variant in Iranian patients is not well characterized. In this study, a consanguineous Iranian family with three generations was recruited whom presented with the clinical diagnosis of autosomal recessive IRD. By targeted next-generation sequencing (TGS) and Sanger sequencing, the proband was found to have a novel, pathological homozygous deletion variant c.560_568del (p.187_190del) of the CERKL gene (NM_001030311.2) that co-segregated with the disease in all affected family members. The Cerkl is highly expressed in the later four developmental retinal stages, playing a vital role in retina degeneration. Therefore, the identification of a novel, homozygous deletion CERKL variant c.560_568del (p.187_190del) in an IRD familial cohort descent provides insights into the molecular pathogenesis of IRD and facilitates genetic counseling and disease prediction.

11.
Cancer Med ; 12(13): 13894-13911, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37081717

RESUMEN

Uterine leiomyosarcoma (uLMS) is an aggressive mesenchymal neoplasm associated with a poor prognosis. Systemic chemotherapy is the standard therapy for patients with uLMS. However, it is unclear which treatment regimen results in the most favorable clinical outcome. We performed a meta-analysis and meta-regression analysis to assess the efficiency of different treatments received by patients with advanced, metastatic, and relapsing uLMS by evaluating the objective response rate (ORR) and disease control rate (DCR) as primary endpoints. The frequentist random effects meta-analysis model was used to compare the outcomes of different treatment regimens for advanced uLMS. A meta-regression analysis was performed to estimate the association between the study-specific hazard ratios and specific demographic variables. A meta-analysis of 51 reports including 1664 patients was conducted. Among patients who received adjuvant chemotherapy (916 patients; 55%), gemcitabine and docetaxel were the most frequently used drugs. First-line monotherapy with alkylating agents (pooled ORR = 0.48; 95% confidence interval [CI]: 0.44-0.52) and second-line monotherapy with protein kinase inhibitors (pooled ORR = 0.45; 95% CI: 0.39-0.52) resulted in favorable prognoses. The combinations of anthracycline plus alkylating therapy (pooled DCR = 0.74; 95% CI: 0.67-0.79) and of gemcitabine plus docetaxel (pooled DCR = 0.70; 95% CI: 0.63-0.75) showed the greatest benefits when used as first-line and second-line chemotherapies, respectively. Subgroup meta-analysis results revealed that dual-regimen therapies comprising anthracycline plus alkylating therapy and gemcitabine plus docetaxel are practical therapeutic choices for International Federation of Gynecology and Obstetrics stages III-IVb with distant metastases when assessed by computed tomography (p = 0.001). Furthermore, neoadjuvant chemotherapy and local radiotherapy resulted in favorable outcomes for patients with earlier stages of distant relapsed uLMS (p < 0.001). Our findings provide a basis for designing new therapeutic strategies and can potentially guide clinical practice toward better prognoses for uLMS patients with advanced, metastatic, and relapsing disease.


Asunto(s)
Leiomiosarcoma , Neoplasias Uterinas , Femenino , Humanos , Leiomiosarcoma/tratamiento farmacológico , Leiomiosarcoma/patología , Docetaxel , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Recurrencia Local de Neoplasia/patología , Gemcitabina , Neoplasias Uterinas/patología , Modelos de Riesgos Proporcionales , Antraciclinas/uso terapéutico
12.
Front Oncol ; 12: 829212, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832555

RESUMEN

The adenylate cyclase (ADCY) superfamily is a group of glycoproteins regulating intracellular signaling. ADCYs act as key regulators in the cyclic adenosine monophosphate (cAMP) signaling pathway and are related to cell sensitivity to chemotherapy and ionizing radiation. Many members of the superfamily are detectable in most chemoresistance cases despite the complexity and unknownness of the specific mechanism underlying the role of ADCYs in the proliferation and invasion of cancer cells. The overactivation of ADCY, as well as its upstream and downstream regulators, is implicated as a major potential target of novel anticancer therapies and markers of exceptional responders to chemotherapy. The present review focuses on the oncogenic functions of the ADCY family and emphasizes the possibility of the mediating roles of deleterious nonsynonymous single nucleotide polymorphisms (nsSNPs) in ADCY as a prognostic therapeutic target in modulating resistance to chemotherapy and immunotherapy. It assesses the mediating roles of ADCY and its counterparts as stress regulators in reprogramming cancer cell metabolism and the tumor microenvironment. Additionally, the well-evaluated inhibitors of ADCY-related signaling, which are under clinical investigation, are highlighted. A better understanding of ADCY-induced signaling and deleterious nsSNPs (p.E1003K and p.R1116C) in ADCY6 provides new opportunities for developing novel therapeutic strategies in personalized oncology and new approaches to enhance chemoimmunotherapy efficacy in treating various cancers.

13.
Methods Mol Biol ; 2514: 107-120, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35771423

RESUMEN

Vasculogenic mimicry (VM) describes a new tumor microvascular paradigm of non-endothelial cells, where aggressive cancer cells independent of angiogenesis acquire the ability to fluid-conducting vessels. VM shows worse 5-year overall survival in cancer that suggesting that VM could be a promising surgical and effective adjuvant therapy strategy in prognostics of metastatic cancer patients. The current chapter is a comprehensive review on "Main Staining Methods and Protocols in Vasculogenic Mimicry." Here, we provide most up-to-date and detailed information upon microscopy and histology protocols for the identification and understanding of VM process in both in vitro and in vivo.


Asunto(s)
Neovascularización Patológica , Humanos , Neovascularización Patológica/patología , Coloración y Etiquetado
14.
Ann Med ; 54(1): 1357-1371, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35543207

RESUMEN

BACKGROUND: Vascular endothelial growth factor (VEGF) is a critical regulator of malignant pleural effusion (MPE) in non-small-cell lung cancer (NSCLC). Bevacizumab (BEV) and apatinib (APA) are novel VEGF blockers that inhibit lung cancer cell proliferation and the development of pleural effusion. METHODS: In this study, we established Lewis lung cancer (LLC) xenograft mouse models to compare the therapeutic effect of APA and BEV in combination with cisplatin (CDDP) against MPE. The anti-tumour and anti-angiogenic effects of this combination therapy were evaluated by 18F-FDG PET/CT imaging, TUNEL assay and Immunohistochemistry. RESULTS: The triple drug combination significantly prolonged the overall survival of the tumour-bearing mice by reducing MPE and glucose metabolism and was more effective in lowering VEGF/soluble VEGFR-2 levels in the serum and pleural exudates compared to either of the monotherapies. Furthermore, CDDP + APA + BEV promoted in vivo apoptosis and decreased microvessel density. CONCLUSIONS: Mechanistically, LLC-induced MPE was inhibited by targeting the VEGF-MEK/ERK pathways. Further studies are needed to establish the synergistic therapeutic effect of these drugs in NSCLC patients with MPE.KEY MESSAGESCombined treatment of MPE with apatinib, bevacizumab and cisplatin can prolong the survival time of mice, reduce the content of MPE, decrease the SUVmax of thoracic tumour tissue, down-regulate the content of VEGF and sVEGFR-2 in serum and pleural fluid, and promote the apoptosis of tumour cells. Angiogenesis and MPE formation can be inhibited by down-regulation of HIF-1α, VEGF, VEGFR-2, MEK1 and MMP-2 molecular signalling pathway proteins.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Derrame Pleural Maligno , Animales , Bevacizumab/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino , Humanos , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Derrame Pleural Maligno/tratamiento farmacológico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/uso terapéutico
16.
Gene ; 816: 146171, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35026293

RESUMEN

Triple-negative breast cancer (TNBC) is the most incurable type of breast cancer, accounting for 15-20% of breast cancer cases. Lapatinib is a dual tyrosine kinase inhibitor targeting EGFR and Her2, and berberine (BBR) is a plant-based alkaloid suggested to inhibit several cancer signaling pathways. We previously reported that lapatinib activates the Akt oncoprotein in MDA-MB231 TNBC cells. The present study determined the mechanism(s) of Akt activation in response to lapatinib, BBR, and capivasertib (Akt inhibitor) as well as the role of Akt signaling in chemoresistance in TNBC cells. Genetic profiles of 10 TNBC cell lines and patients were analyzed using datasets obtained from Gene Expression Omnibus and The Cancer Genome Atlas Database. Then, the effects of lapatinib, BBR, and capivasertib on treated MDA-MB231 and MCF-7 cell lines were studied using cytotoxicity, immunoblot, and RNA-sequencing analyses. For further confirmation, we also performed real-time PCR for genes associated with PI3K signaling. MDA-MB231 and MCF-7 cell lines were both strongly resistant to capivasertib largely due to significant Akt activation in both breast cancer cell lines, while lapatinib and BBR only enhanced Akt signaling in MDA-MB231 cells. Next-generation sequencing, functional enrichment analysis, and immunoblot revealed downregulation of CDK6 and DNMT1 in response to lapatinib and BBR lead to a decrease in cell proliferation. Expression of placental, fibroblast growth factor, and angiogenic biomarker genes, which are significantly associated with Akt activation and/or dormancy in breast cancer cells, was significantly upregulated in TNBC cells treated with lapatinib and BBR. Lapatinib and BBR activate Akt through upregulation of alternative signaling, which lead to chemoresistance in TNBC cell. In addition, lapatinib overexpresses genes related to PI3K signaling in resistant TNBC cell model.


Asunto(s)
Antineoplásicos/farmacología , Berberina/farmacología , Lapatinib/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos Fitogénicos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Quinasa 6 Dependiente de la Ciclina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Epigénesis Genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes myc , Humanos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Pirimidinas/farmacología , Pirroles/farmacología , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/metabolismo , Regulación hacia Arriba/efectos de los fármacos
17.
Mol Biol Rep ; 49(3): 1799-1816, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34816327

RESUMEN

BACKGROUND: Nigella sativa (N. sativa) exhibits anti-inflammatory, antioxidant, antidiabetic, antimetastatic and antinociceptive effects and has been used to treat dozens of diseases. Thymoquinone (TQ) is an important and active component isolated from N. sativa seeds. Inhibition of cancer-associated activating PIK3CA mutations is a new prospective targeted therapy in personalized metastatic breast cancer (MBC). TQ is reported to be an effective inhibitor of the PI3K/Akt1 pathway in MBC. This study aimed to evaluate the in vitro antitumor effect of TQ in the context of two PIK3CA hotspot mutations, p. H1047R and p. H1047L. METHODS AND RESULTS: Molecular dynamics, free energy landscapes and principal component analyses were also used to survey the mechanistic effects of the p. H1047R and p. H1047L mutations on the PI3K/Akt1 pathway. Our findings clearly confirmed that the p. H1047R and p. H1047L mutants could reduce the inhibitory effect of ΔNp63α on the kinase domain of PIK3CA, resulting in increased activity of PI3K downstream signals. Structurally, the partial disruption of the interaction between the ΔNp63α DNA binding domain and the PIK3CA kinase domain at residues 114-359 and 797-1068 destabilizes the conformation of the activation loop and modifies the PIK3CA/ΔNp63α complex. Alongside these structural changes, we found that TQ treatment resulted in high PI3K/Akt1 pathway inhibition in p. H1047R and p. H1047L-expressing cells versus wild-type cells. CONCLUSIONS: These two PIK3CA hotspot mutations therefore not only contribute to tumor progression in patients with MBC but may also serve as targets for the development of novel small molecule therapeutic strategies.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasas , Benzoquinonas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasa Clase I/genética , Femenino , Humanos , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Estudios Prospectivos , Proteínas Proto-Oncogénicas c-akt/genética
18.
Front Cell Dev Biol ; 9: 705791, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722499

RESUMEN

Background: Cancer-derived extracellular vesicles (EVs) are regarded to have significant function in most steps during cancer progression. This meta-analysis aims to investigate the accuracy of EVs as a biomarker in cancer diagnosis. Methods: The diagnostic efficacy of EVs for different cancers was assessed using pooled sensitivity and specificity, diagnostic odds ratio (DOR), and overall area under the curve (AUC) of the summary receiver operating characteristic (SROC). The positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were verified to estimate the diagnostic efficacy of EV at a clinical level. Results: In all, 6,183 cancer patients and 2,437 healthy controls from 75 eligible studies reported in 42 publications were included in the study. The overall pooled sensitivity, specificity, PLR, NLR, and DOR were 0.62 (95% CI: 0.60-0.63), 0.76 (95% CI: 0.75-0.78), 3.07 (95% CI: 2.52-3.75), 0.34 (95% CI: 0.28-0.41), and 10.98 (95% CI: 7.53-16.00), respectively. Similarly, the AUC of the SROC was 0.88, indicating a high conservation of EVs as an early diagnostic marker. Furthermore, subgroup analysis suggested that the use of small EVs as a biomarker was more accurate in serum-based samples of nervous system cancer (p < 0.001). As a result, ultracentrifugation and quantification and size determination methods, such as Western blotting and ELISA were the most reliable identification methods for EV detection. We also indicated that increased secretion of EVs made them a capable biomarker for diagnosing cancer in elderly European individuals. Conclusions: Our study provides evidence that EVs are a promising non-invasive biomarker for cancer diagnosis. Well-designed cohort studies should be conducted to warrant the clinical diagnostic value of EVs.

19.
Am J Cancer Res ; 11(10): 5155-5183, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765318

RESUMEN

Breast cancer is the most prevalent type of cancer among women. Several types of drugs, targeting the specific proteins expressed on the breast cancer cell surface (such as receptor tyrosine kinases and immune checkpoint regulators) and proteins involved in cell cycle and motility (including cyclin-dependent kinases, DNA stabilisers, and cytoskeleton modulators) are approved for different subtypes of breast cancer. However, breast cancer also has a poor response to conventional chemotherapy due to intrinsic and acquired resistance, and an Akt fingerprint is detectable in most drug-resistant cases. Overactivation of Akt and its upstream and downstream regulators in resistant breast cancer cells is considered a major potential target for novel anti-cancer therapies, suggesting that Akt signalling acts as a cellular mechanism against chemotherapy. The present review has shown that sustained activation of Akt results in resistance to different types of chemotherapy. Akt signalling plays a cellular defence role against chemotherapy and (1) enhances multi-drug resistance, (2) increases reactive oxygen species at breast tumor microenvironment, (3) enhances anaerobic metabolism, (4) inhibits the tricarboxylic cycle, (5) promotes PD-L1 upregulation, (6) inhibits apoptosis, (7) increases glucose uptake, and more importantly (8) recruits and interconnects the plasma membrane, nucleus, endoplasmic reticulum, and mitochondria to hijack breast cancer cells and rescue these cells from chemotherapy. Therefore, Akt signalling is considered a cellular defence mechanism employed against chemotherapeutic effects. In addition, interfering roles of PI3K/Akt signalling on the current cytotoxic and molecularly targeted therapy as well as immunotherapy of breast cancer are discussed with a clinical approach. Although, alpelisib, a PIK3CA inhibitor, is the only PI3K/Akt pathway inhibitor approved for breast cancer, we also highlight well-evaluated inhibitors of PI3K/Akt signalling based on different subtypes of breast cancer, which are under clinical trials whether as monotherapy or in combination with other types of chemotherapy.

20.
Transl Oncol ; 14(12): 101237, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34626953

RESUMEN

This study aimed to identify a novel disease-associated differentially co-expressed mRNA-microRNA (miRNA) that is associated with vasculogenic mimicry (VM) and epithelial-to-mesenchymal transition (EMT) network at different stages of melanoma. By applying weighted gene co-expression network analysis, we constructed a VM+EMT biological network with the available microarray dataset downloaded from a public database. Quantitative real-time PCR, immunohistochemical staining, and CD31-periodic acid solution dual staining were performed to confirm the expression of genes associated with EMT and VM formation in subjects with malignant melanoma (n = 18) and primary melanoma (n = 13) and in healthy subjects (n = 10). Our findings suggested that phosphatidylserine-specific phospholipase A1-alpha (PLA1A) and dermokine (DMKN) genes function as oncogenes that trigger VM and EMT processes during melanomagenesis on interaction with miR-370, miR-563, and miR-770-5p. PLA1A and DMKN genes can be considered potential VM+EMT network-based diagnostic biomarkers for distinguishing between melanoma patients. We postulate that a network with altered PLA1A/miR-563 and DMNK/miR-770-5p/miR-370 may contribute to melanomagenesis by triggering the EMT signaling pathway and VM formation. This study provides a potentially valuable approach for the early diagnosis and prognosis of melanoma progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...