Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(3): e3002503, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38478490

RESUMEN

Cell culture devices, such as microwells and microfluidic chips, are designed to increase the complexity of cell-based models while retaining control over culture conditions and have become indispensable platforms for biological systems modelling. From microtopography, microwells, plating devices, and microfluidic systems to larger constructs such as live imaging chamber slides, a wide variety of culture devices with different geometries have become indispensable in biology laboratories. However, while their application in biological projects is increasing exponentially, due to a combination of the techniques, equipment and tools required for their manufacture, and the expertise necessary, biological and biomedical labs tend more often to rely on already made devices. Indeed, commercially developed devices are available for a variety of applications but are often costly and, importantly, lack the potential for customisation by each individual lab. The last point is quite crucial, as often experiments in wet labs are adapted to whichever design is already available rather than designing and fabricating custom systems that perfectly fit the biological question. This combination of factors still restricts widespread application of microfabricated custom devices in most biological wet labs. Capitalising on recent advances in bioengineering and microfabrication aimed at solving these issues, and taking advantage of low-cost, high-resolution desktop resin 3D printers combined with PDMS soft lithography, we have developed an optimised a low-cost and highly reproducible microfabrication pipeline. This is thought specifically for biomedical and biological wet labs with not prior experience in the field, which will enable them to generate a wide variety of customisable devices for cell culture and tissue engineering in an easy, fast reproducible way for a fraction of the cost of conventional microfabrication or commercial alternatives. This protocol is designed specifically to be a resource for biological labs with limited expertise in those techniques and enables the manufacture of complex devices across the µm to cm scale. We provide a ready-to-go pipeline for the efficient treatment of resin-based 3D-printed constructs for PDMS curing, using a combination of polymerisation steps, washes, and surface treatments. Together with the extensive characterisation of the fabrication pipeline, we show the utilisation of this system to a variety of applications and use cases relevant to biological experiments, ranging from micro topographies for cell alignments to complex multipart hydrogel culturing systems. This methodology can be easily adopted by any wet lab, irrespective of prior expertise or resource availability and will enable the wide adoption of tailored microfabricated devices across many fields of biology.


Asunto(s)
Técnicas de Cultivo de Célula , Microtecnología , Microfluídica/métodos , Impresión Tridimensional , Dispositivos Laboratorio en un Chip
2.
HardwareX ; 15: e00443, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37795340

RESUMEN

Behaviour is the ultimate output of neural circuit computations, and therefore its analysis is a cornerstone of neuroscience research. However, every animal and experimental paradigm requires different illumination conditions to capture and, in some cases, manipulate specific behavioural features. This means that researchers often develop, from scratch, their own solutions and experimental set-ups. Here, we present OptoPi, an open source, affordable (∼ £600), behavioural arena with accompanying multi-animal tracking software. The system features highly customisable and reproducible visible and infrared illumination and allows for optogenetic stimulation. OptoPi acquires images using a Raspberry Pi camera, features motorised LED-based illumination, Arduino control, as well as irradiance monitoring to fine-tune illumination conditions with real time feedback. Our open-source software (BioImageProcessing) can be used to simultaneously track multiple unmarked animals both in on-line and off-line modes. We demonstrate the functionality of OptoPi by recording and tracking under different illumination conditions the spontaneous behaviour of larval zebrafish as well as adult Drosophila flies and their first instar larvae, an experimental animal that due to its small size and transparency has classically been hard to track. Further, we showcase OptoPi's optogenetic capabilities through a series of experiments using transgenic Drosophila larvae.

3.
HardwareX ; 14: e00417, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37102068

RESUMEN

Studying the development of neural circuits in rodent models requires surgical access to the neonatal brain. Since commercially available stereotaxic and anesthetic equipment is designed for use in adults, reliable targeting of brain structures in such young animals can be challenging. Hypothermic cooling (cryoanesthesia) has been used as a preferred anesthesia approach in neonates. This commonly involves submerging neonates in ice, an approach that is poorly controllable. We have developed an affordable, simple to construct device - CryoPup - that allows for fast and robust cryoanesthesia of rodent pups. CryoPup consists of a microcontroller controlling a Peltier element and a heat exchanger. It is capable of both cooling and heating, thereby also functioning as a heating pad during recovery. Importantly, it has been designed for size compatibility with common stereotaxic frames. We validate CryoPup in neonatal mice, demonstrating that it allows for rapid, reliable and safe cryoanesthesia and subsequent recovery. This open-source device will facilitate future studies into the development of neural circuits in the postnatal brain.

4.
Parasit Vectors ; 13(1): 169, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32248844

RESUMEN

BACKGROUND: Trypanosoma brucei exhibits a complex life-cycle alternating between tsetse flies and mammalian hosts. When parasites infect the fly, cells differentiate to adapt to life in various tissues, which is accompanied by drastic morphological and biochemical modifications especially in the proventriculus. This key step represents a bottleneck for salivary gland infection. METHODS: Here, we monitored flagellum assembly in trypanosomes during differentiation from the trypomastigote to the epimastigote stage, i.e. when the nucleus migrates to the posterior end of the cell, by using three-dimensional electron microscopy (focused ion beam scanning electron microscopy, FIB-SEM) and immunofluorescence assays. RESULTS: The combination of light and electron microscopy approaches provided structural and molecular evidence that the new flagellum is assembled while the nucleus migrates towards the posterior region of the body. Two major differences with well-known procyclic cells are reported. First, growth of the new flagellum begins when the associated basal body is found in a posterior position relative to the mature flagellum. Secondly, the new flagellum acquires its own flagellar pocket before rotating on the left side of the anterior-posterior axis. FIB-SEM revealed the presence of a structure connecting the new and mature flagellum and serial sectioning confirmed morphological similarities with the flagella connector of procyclic cells. We discuss the potential function of the flagella connector in trypanosomes from the proventriculus. CONCLUSIONS: These findings show that T. brucei finely modulates its cytoskeletal components to generate highly variable morphologies.


Asunto(s)
Flagelos/fisiología , Trypanosoma brucei brucei/fisiología , Moscas Tse-Tse/parasitología , Animales , Diferenciación Celular , Citoesqueleto/parasitología , Flagelos/genética , Técnica del Anticuerpo Fluorescente , Estadios del Ciclo de Vida , Masculino , Microscopía Electrónica , Proteínas Protozoarias , Trypanosoma brucei brucei/ultraestructura
5.
Nat Biomed Eng ; 3(11): 930-942, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31110290

RESUMEN

Preclinical studies of psychiatric disorders use animal models to investigate the impact of environmental factors or genetic mutations on complex traits such as decision-making and social interactions. Here, we introduce a method for the real-time analysis of the behaviour of mice housed in groups of up to four over several days and in enriched environments. The method combines computer vision through a depth-sensing infrared camera, machine learning for animal and posture identification, and radio-frequency identification to monitor the quality of mouse tracking. It tracks multiple mice accurately, extracts a list of behavioural traits of both individuals and the groups of mice, and provides a phenotypic profile for each animal. We used the method to study the impact of Shank2 and Shank3 gene mutations-mutations that are associated with autism-on mouse behaviour. Characterization and integration of data from the behavioural profiles of Shank2 and Shank3 mutant female mice revealed their distinctive activity levels and involvement in complex social interactions.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/psicología , Conducta Animal , Aprendizaje Automático , Proteínas del Tejido Nervioso/genética , Animales , Investigación Conductal , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones/genética , Ratones/psicología , Ratones Noqueados/genética , Ratones Noqueados/psicología , Proteínas de Microfilamentos , Mutación , Fenotipo , Conducta Social , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...