Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cytometry A ; 105(3): 165-170, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38343094

RESUMEN

This 27-color flow cytometry antibody panel allows broad immune-profiling of major leukocyte subsets in human whole blood (WB). It includes lineage markers to identify myeloid and lymphoid cell populations including granulocytes, monocytes, myeloid dendritic cells (mDCs), natural killer (NK) cells, NKT-like cells, B cells, conventional CD4 and CD8 T cells, γδ T cells, mucosa-associated invariant T (MAIT) cells and innate lymphoid cells (ILC). To further characterize each of these populations, markers defining stages of cell differentiation (CCR7, CD27, CD45RA, CD127, CD57), cytotoxic potential (perforin, granzyme B) and cell activation/proliferation (HLA-DR, CD38, Ki-67) were included. This panel was developed for quantifying absolute counts and phenotyping major leukocyte populations in cryopreserved, fixed WB collected from participants enrolled in large multi-site tuberculosis (TB) vaccine clinical trials. This antibody panel can be applied to profile major leukocyte subsets in other sample types such as fresh WB or peripheral blood mononuclear cells (PBMCs) with only minor additional optimization.


Asunto(s)
Inmunidad Innata , Leucocitos Mononucleares , Humanos , Inmunofenotipificación , Citometría de Flujo , Células Asesinas Naturales
2.
Cytometry A ; 103(12): 992-1003, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37675607

RESUMEN

We developed a flow cytometry-based assay, termed Differential Leukocyte Counting and Immunophenotyping in Cryopreserved Ex vivo whole blood (DLC-ICE), that allows quantification of absolute counts and frequencies of leukocyte subsets and measures expression of activation, phenotypic and functional markers. We evaluated the performance of the DLC-ICE assay by determining inter-operator variability for processing fresh whole blood (WB) from healthy donors collected at multiple clinical sites. In addition, we assessed inter-operator variability for staining of fixed cells and robustness across different anticoagulants. Accuracy was evaluated by comparing DLC-ICE measurements to real-time cell enumeration using an accredited hematology analyzer. Finally, we developed and tested the performance of a 27-colour immunophenotyping panel on cryopreserved fixed WB and compared results to matched fresh WB. Overall, we observed <20% variability in absolute counts and frequencies of granulocytes, monocytes and lymphocytes (T, B and NK cells) when fresh WB was collected in different anti-coagulant tubes, processed or stained by independent operators. Absolute cell counts measured across operators and anti-coagulants using the DLC-ICE method exhibited excellent correlation with the reference method, complete blood count (CBC) with differential, measured using a hematology analyzer (r2 > 0.9 for majority of measurements). A comparison of leukocyte immunophenotyping on fresh WB versus DLC-ICE processed blood yielded equivalent and linear results over a wide dynamic range (r2 = 0.94 over 10-104 cells/µL). These results demonstrate low variability across trained operators, high robustness, linearity and accuracy, supporting utility of the DLC-ICE assay for large cohort studies involving multiple clinical research sites.


Asunto(s)
Leucocitos , Monocitos , Humanos , Inmunofenotipificación , Recuento de Leucocitos , Células Asesinas Naturales , Citometría de Flujo/métodos
3.
EMBO J ; 41(12): e109300, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35467036

RESUMEN

Group-2 innate lymphoid cells (ILC2s), which are involved in type 2 inflammatory diseases such as allergy, can exhibit immunological memory, but the basis of this ILC2 "trained immunity" has remained unclear. Here, we found that stimulation with IL-33/IL-25 or exposure to the allergen papain induces the expression of the transcription factor c-Maf in mouse ILC2s. Chronic papain exposure results in high production of IL-5 and IL-13 cytokines and lung eosinophil recruitment, effects that are blocked by c-Maf deletion in ILCs. Transcriptomic analysis revealed that knockdown of c-Maf in ILC2s suppresses expression of type 2 cytokine genes, as well as of genes linked to a memory-like phenotype. Consistently, c-Maf was found highly expressed in human adult ILC2s but absent in cord blood and required for cytokine production in isolated human ILC2s. Furthermore, c-Maf-deficient mouse or human ILC2s failed to exhibit strengthened ("trained") responses upon repeated challenge. Thus, the expression of c-Maf is indispensable for optimal type 2 cytokine production and proper memory-like responses in group-2 innate lymphoid cells.


Asunto(s)
Inmunidad Innata , Linfocitos , Animales , Citocinas/metabolismo , Humanos , Interleucina-33/genética , Interleucina-33/metabolismo , Pulmón/metabolismo , Linfocitos/metabolismo , Ratones , Papaína/metabolismo , Proteínas Proto-Oncogénicas c-maf/metabolismo
4.
Cancer Immunol Res ; 8(9): 1180-1192, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32661095

RESUMEN

Bladder cancer is one of the most common malignancies and has poor prognosis for patients with locally advanced, muscle-invasive, disease despite the efficacy of immune checkpoint blockade. To develop more effective immunotherapy strategies, we studied a genetic mouse model carrying deletion of Tp53 and Pten in the bladder, which recapitulates bladder cancer tumorigenesis and gene expression patterns found in patients. We discovered that tumor cells became more malignant and the tumor immune microenvironment evolved from an inflammatory to an immunosuppressive state. Accordingly, treatment with anti-PD1 was ineffective, but resistance to anti-PD1 therapy was overcome by combination with a CD40 agonist (anti-CD40), leading to strong antitumor immune responses. Mechanistically, this combination led to CD8+ T-cell recruitment from draining lymph nodes. CD8+ T cells induced an IFNγ-dependent repolarization toward M1-like/IFNß-producing macrophages. CD8+ T cells, macrophages, IFN I, and IFN II were all necessary for tumor control, as demonstrated in vivo by the administration of blocking antibodies. Our results identify essential cross-talk between innate and adaptive immunity to control tumor development in a model representative of anti-PD1-resistant human bladder cancer and provide scientific rationale to target CD40 in combination with blocking antibodies, such as anti-PD1/PD-L1, for muscle-invasive bladder cancer.


Asunto(s)
Antígenos CD40/agonistas , Inmunoterapia/métodos , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/terapia , Animales , Antígenos CD40/inmunología , Antígenos CD40/metabolismo , Modelos Animales de Enfermedad , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones
5.
Front Immunol ; 11: 206, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117317

RESUMEN

Beyond its well-admitted role in development and organogenesis, it is now clear that the transcription factor c-Maf has owned its place in the realm of immune-related transcription factors. Formerly introduced solely as a Th2 transcription factor, the role attributed to c-Maf has gradually broadened over the years and has extended to most, if not all, known immune cell types. The influence of c-Maf is particularly prominent among T cell subsets, where c-Maf regulates the differentiation as well as the function of multiple subsets of CD4 and CD8 T cells, lending it a crucial position in adaptive immunity and anti-tumoral responsiveness. Recent research has also revealed the role of c-Maf in controlling Th17 responses in the intestine, positioning it as an essential factor in intestinal homeostasis. This review aims to present and discuss the recent advances highlighting the particular role played by c-Maf in T lymphocyte differentiation, function, and homeostasis.


Asunto(s)
Tolerancia Inmunológica , Proteínas Proto-Oncogénicas c-maf/fisiología , Linfocitos T/inmunología , Diferenciación Celular , Humanos , Interleucina-10/biosíntesis , Intestinos/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/análisis , Proteínas Proto-Oncogénicas c-maf/genética , Linfocitos T/citología , Linfocitos T/fisiología
6.
Sci Rep ; 9(1): 6135, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992496

RESUMEN

The maintenance of homeostasis in the gut is a major challenge for the immune system. Here we demonstrate that the transcription factor MAF plays a central role in T cells for the prevention of gastro-intestinal inflammation. Conditional knock out mice lacking Maf in all T cells developed spontaneous late-onset colitis, correlating with a decrease of FOXP3+RORγt+ T cells proportion, dampened IL-10 production in the colon and an increase of inflammatory TH17 cells. Strikingly, FOXP3+ specific conditional knock out mice for MAF did not develop colitis and demonstrated normal levels of IL-10 in their colon, despite the incapacity of regulatory T cells lacking MAF to suppress colon inflammation in Rag1-/- mice transferred with naïve CD4+ T cells. We showed that one of the cellular sources of IL-10 in the colon of these mice are TH17 cells. Thus, MAF is critically involved in the maintenance of the gut homeostasis by regulating the balance between Treg and TH17 cells either at the level of their differentiation or through the modulation of their functions.


Asunto(s)
Colitis/genética , Proteínas Proto-Oncogénicas c-maf/genética , Linfocitos T Reguladores/patología , Células Th17/patología , Animales , Células Cultivadas , Colitis/inmunología , Colitis/patología , Femenino , Factores de Transcripción Forkhead/análisis , Factores de Transcripción Forkhead/inmunología , Eliminación de Gen , Interleucina-10/análisis , Interleucina-10/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/análisis , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Proteínas Proto-Oncogénicas c-maf/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología
7.
EMBO J ; 34(15): 2042-58, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26139534

RESUMEN

T cells infiltrating neoplasms express surface molecules typical of chronically virus-stimulated T cells, often termed "exhausted" T cells. We compared the transcriptome of "exhausted" CD8 T cells infiltrating autochthonous melanomas to those of naïve and acutely stimulated CD8 T cells. Despite strong similarities between transcriptional signatures of tumor- and virus-induced exhausted CD8 T cells, notable differences appeared. Among transcriptional regulators, Nr4a2 and Maf were highly overexpressed in tumor-exhausted T cells and significantly upregulated in CD8 T cells from human melanoma metastases. Transduction of murine tumor-specific CD8 T cells to express Maf partially reproduced the transcriptional program associated with tumor-induced exhaustion. Upon adoptive transfer, the transduced cells showed normal homeostasis but failed to accumulate in tumor-bearing hosts and developed defective anti-tumor effector responses. We further identified TGFß and IL-6 as main inducers of Maf expression in CD8 T cells and showed that Maf-deleted tumor-specific CD8 T cells were much more potent to restrain tumor growth in vivo. Therefore, the melanoma microenvironment contributes to skewing of CD8 T cell differentiation programs, in part by TGFß/IL-6-mediated induction of Maf.


Asunto(s)
Linfocitos T CD8-positivos/citología , Diferenciación Celular/inmunología , Melanoma/metabolismo , Proteínas Proto-Oncogénicas c-maf/metabolismo , Microambiente Tumoral/fisiología , Animales , Linfocitos T CD8-positivos/metabolismo , Cartilla de ADN/genética , Citometría de Flujo , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Interleucina-6/metabolismo , Luciferasas , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-maf/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...