Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Biol Toxicol ; 39(3): 795-811, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34519926

RESUMEN

Doxorubicin (Dox) is one of the most commonly used anthracyclines for the treatment of solid and hematological tumors such as B-/T cell acute lymphoblastic leukemia (ALL). Dox compromises topoisomerase II enzyme functionality, thus inducing structural damages during DNA replication and causes direct damages intercalating into DNA double helix. Eukaryotic cells respond to DNA damages by activating the ATM-CHK2 and/or ATR-CHK1 pathway, whose function is to regulate cell cycle progression, to promote damage repair, and to control apoptosis. We evaluated the efficacy of a new drug schedule combining Dox and specific ATR (VE-821) or CHK1 (prexasertib, PX) inhibitors in the treatment of human B-/T cell precursor ALL cell lines and primary ALL leukemic cells. We found that ALL cell lines respond to Dox activating the G2/M cell cycle checkpoint. Exposure of Dox-pretreated ALL cell lines to VE-821 or PX enhanced Dox cytotoxic effect. This phenomenon was associated with the abrogation of the G2/M cell cycle checkpoint with changes in the expression pCDK1 and cyclin B1, and cell entry in mitosis, followed by the induction of apoptosis. Indeed, the inhibition of the G2/M checkpoint led to a significant increment of normal and aberrant mitotic cells, including those showing tripolar spindles, metaphases with lagging chromosomes, and massive chromosomes fragmentation. In conclusion, we found that the ATR-CHK1 pathway is involved in the response to Dox-induced DNA damages and we demonstrated that our new in vitro drug schedule that combines Dox followed by ATR/CHK1 inhibitors can increase Dox cytotoxicity against ALL cells, while using lower drug doses. • Doxorubicin activates the G2/M cell cycle checkpoint in acute lymphoblastic leukemia (ALL) cells. • ALL cells respond to doxorubicin-induced DNA damages by activating the ATR-CHK1 pathway. • The inhibition of the ATR-CHK1 pathway synergizes with doxorubicin in the induction of cytotoxicity in ALL cells. • The inhibition of ATR-CHK1 pathway induces aberrant chromosome segregation and mitotic spindle defects in doxorubicin-pretreated ALL cells.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Quinasas , Humanos , Proteínas Quinasas/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Doxorrubicina/farmacología , Daño del ADN , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
2.
Cancers (Basel) ; 11(11)2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31717700

RESUMEN

INTRODUCTION: Screening for synthetic lethality markers has demonstrated that the inhibition of the cell cycle checkpoint kinases WEE1 together with CHK1 drastically affects stability of the cell cycle and induces cell death in rapidly proliferating cells. Exploiting this finding for a possible therapeutic approach has showed efficacy in various solid and hematologic tumors, though not specifically tested in acute lymphoblastic leukemia. METHODS: The efficacy of the combination between WEE1 and CHK1 inhibitors in B and T cell precursor acute lymphoblastic leukemia (B/T-ALL) was evaluated in vitro and ex vivo studies. The efficacy of the therapeutic strategy was tested in terms of cytotoxicity, induction of apoptosis, and changes in cell cycle profile and protein expression using B/T-ALL cell lines. In addition, the efficacy of the drug combination was studied in primary B-ALL blasts using clonogenic assays. RESULTS: This study reports, for the first time, the efficacy of the concomitant inhibition of CHK1/CHK2 and WEE1 in ALL cell lines and primary leukemic B-ALL cells using two selective inhibitors: PF-0047736 (CHK1/CHK2 inhibitor) and AZD-1775 (WEE1 inhibitor). We showed strong synergism in the reduction of cell viability, proliferation and induction of apoptosis. The efficacy of the combination was related to the induction of early S-phase arrest and to the induction of DNA damage, ultimately triggering cell death. We reported evidence that the efficacy of the combination treatment is independent from the activation of the p53-p21 pathway. Moreover, gene expression analysis on B-ALL primary samples showed that Chek1 and Wee1 are significantly co-expressed in samples at diagnosis (Pearson r = 0.5770, p = 0.0001) and relapse (Pearson r= 0.8919; p = 0.0001). Finally, the efficacy of the combination was confirmed by the reduction in clonogenic survival of primary leukemic B-ALL cells. CONCLUSION: Our findings suggest that the combination of CHK1 and WEE1 inhibitors may be a promising therapeutic strategy to be tested in clinical trials for adult ALL.

3.
J Hematol Oncol ; 11(1): 99, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068368

RESUMEN

BACKGROUND: Despite the recent progress that has been made in the understanding and treatment of acute lymphoblastic leukemia (ALL), the outcome is still dismal in adult ALL cases. Several studies in solid tumors identified high expression of WEE1 kinase as a poor prognostic factor and reported its role as a cancer-conserving oncogene that protects cancer cells from DNA damage. Therefore, the targeted inhibition of WEE1 kinase has emerged as a rational strategy to sensitize cancer cells to antineoplastic compounds, which we evaluate in this study. METHODS: The effectiveness of the selective WEE1 inhibitor AZD-1775 as a single agent and in combination with different antineoplastic agents in B and T cell precursor ALL (B/T-ALL) was evaluated in vitro and ex vivo studies. The efficacy of the compound in terms of cytotoxicity, induction of apoptosis, and changes in gene and protein expression was assessed using different B/T-ALL cell lines and confirmed in primary ALL blasts. RESULTS: We showed that WEE1 was highly expressed in adult primary ALL bone marrow and peripheral blood blasts (n = 58) compared to normal mononuclear cells isolated from the peripheral blood of healthy donors (p = 0.004). Thus, we hypothesized that WEE1 could be a rational target in ALL, and its inhibition could enhance the cytotoxicity of conventional therapies used for ALL. We evaluated the efficacy of AZD-1775 as a single agent and in combination with several antineoplastic agents, and we elucidated its mechanisms of action. AZD-1775 reduced cell viability in B/T-ALL cell lines by disrupting the G2/M checkpoint and inducing apoptosis. These findings were confirmed in human primary ALL bone marrow and peripheral blood blasts (n = 15). In both cell lines and primary leukemic cells, AZD-1775 significantly enhanced the efficacy of several tyrosine kinase inhibitors (TKIs) such as bosutinib, imatinib, and ponatinib, and of chemotherapeutic agents (clofarabine and doxorubicin) in terms of the reduction of cell viability, apoptosis induction, and inhibition of proliferation. CONCLUSIONS: Our data suggest that WEE1 plays a role in ALL blast's survival and is a bona fide target for therapeutic intervention. These data support the evaluation of the therapeutic potential of AZD-1775 as chemo-sensitizer agent for the treatment of B/T-ALL.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Tirosina Quinasas/genética , Línea Celular Tumoral , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
5.
Oncotarget ; 7(33): 53377-53391, 2016 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-27438145

RESUMEN

During the last few years many Checkpoint kinase 1/2 (Chk1/Chk2) inhibitors have been developed for the treatment of different type of cancers. In this study we evaluated the efficacy of the Chk 1/2 inhibitor prexasertib mesylate monohydrate in B-/T- cell progenitor acute lymphoblastic leukemia (ALL) as single agent and in combination with other drugs. The prexasertib reduced the cell viability in a dose and time dependent manner in all the treated cell lines. The cytotoxic activity was confirmed by the increment of apoptotic cells (Annexin V/Propidium Iodide staining), by the increase of γH2A.X protein expression and by the activation of different apoptotic markers (Parp-1 and pro-Caspase3 cleavage). Furthermore, the inhibition of Chk1 changed the cell cycle profile. In order to evaluate the chemo-sensitizer activity of the compound, different cell lines were treated for 24 and 48 hours with prexasertib in combination with other drugs (imatinib, dasatinib and clofarabine). The results from cell line models were strengthened in primary leukemic blasts isolated from peripheral blood of adult acute lymphoblastic leukemia patients. In this study we highlighted the mechanism of action and the effectiveness of prexasertib as single agent or in combination with other conventional drugs like imatinib, dasatinib and clofarabine in the treatment of B-/T-ALL.


Asunto(s)
Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa de Punto de Control 2/antagonistas & inhibidores , Pirazinas/farmacología , Pirazoles/farmacología , Nucleótidos de Adenina/farmacología , Antineoplásicos/farmacología , Arabinonucleósidos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa de Punto de Control 2/metabolismo , Clofarabina , Dasatinib/farmacología , Sinergismo Farmacológico , Humanos , Mesilato de Imatinib/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Inhibidores de Proteínas Quinasas/farmacología
6.
J Hematol Oncol ; 8: 125, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26542114

RESUMEN

BACKGROUND: Although progress in children, in adults, ALL still carries a dismal outcome. Here, we explored the in vitro and in vivo activity of PF-00477736 (Pfizer), a potent, selective ATP-competitive small-molecule inhibitor of checkpoint kinase 1 (Chk1) and with lower efficacy of checkpoint kinase 2 (Chk2). METHODS: The effectiveness of PF-00477736 as single agent in B-/T-ALL was evaluated in vitro and in vivo studies as a single agent. The efficacy of the compound in terms of cytotoxicity, induction of apoptosis, and changes in gene and protein expression was assessed using different B-/T-ALL cell lines. Finally, the action of PF-00477736 was assessed in vivo using leukemic mouse generated by a single administration of the tumorigenic agent N-ethyl-N-nitrosourea. RESULTS: Chk1 and Chk2 are overexpressed concomitant with the presence of genetic damage as suggested by the nuclear labeling for γ-H2A.X (Ser139) in 68 % of ALL patients. In human B- and T-ALL cell lines, inhibition of Chk1/2 as a single treatment strategy efficiently triggered the Chk1-Cdc25-Cdc2 pathway resulting in a dose- and time-dependent cytotoxicity, induction of apoptosis, and increased DNA damage. Moreover, treatment with PF-00477736 showed efficacy ex vivo in primary leukemic blasts separated from 14 adult ALL patients and in vivo in mice transplanted with T-ALL, arguing in favor of its future clinical evaluation in leukemia. CONCLUSIONS: In vitro, ex vivo, and in vivo results support the inhibition of Chk1 as a new therapeutic strategy in acute lymphoblastic leukemia, and they provide a strong rationale for its future clinical investigation.


Asunto(s)
Benzodiazepinonas/farmacología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Proteínas Quinasas/metabolismo , Pirazoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica/métodos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Experimental/tratamiento farmacológico , Leucemia Experimental/genética , Leucemia Experimental/metabolismo , Ratones Endogámicos C57BL , Microscopía Fluorescente , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/genética , Análisis de Supervivencia
7.
Exp Hematol Oncol ; 4: 24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26312160

RESUMEN

Therapeutic implications of intra-tumor heterogeneity are still undefined. In this study we report a genetic and functional analysis aimed at defining the mechanisms of chemoresistance in a 43-year old woman affected by stage IVB Burkitt lymphoma with bulky abdominal masses and peritoneal effusion. The patient, despite a transient initial response to chemotherapy with reduction of the bulky masses, rapidly progressed and died of her disease. Targeted TP53 sequencing found that the bulky mass was wild-type whereas peritoneal fluid cells harbored a R282W mutation. Functional studies on TP53 mutant cells demonstrated an impaired p53-mediated response, resistance to ex vivo doxorubicin administration, overexpression of DNA damage response (DDR) activation markers and high sensitivity to pharmacologic DDR inhibition. These findings suggest that intra-tumor heterogeneity for TP53 mutational status may occur in MYC-driven cancers, and that DDR inhibitors could be effective in targeting hidden TP53 mutant clones in tumors characterized by genomic instability and prone to intra-tumor heterogeneity.

8.
Oncotarget ; 6(9): 6553-69, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25544753

RESUMEN

The recent finding that MYC-driven cancers are sensitive to inhibition of the DNA damage response (DDR) pathway, prompted us to investigate the role of DDR pathway as therapeutic target in diffuse large B-cell lymphoma (DLBCL), which frequently overexpresses the MYC oncogene. In a preliminary immunohistochemical study conducted on 99 consecutive DLBCL patients, we found that about half of DLBCLs showed constitutive expression of the phosphorylated forms of checkpoint kinases (CHK) and CDC25c, markers of DDR activation, and of phosphorylated histone H2AX (γH2AX), marker of DNA damage and genomic instability. Constitutive γH2AX expression correlated with c-MYC levels and DDR activation, and defined a subset of tumors characterised by poor outcome. Next, we used the CHK inhibitor PF-0477736 as a tool to investigate whether the inhibition of the DDR pathway might represent a novel therapeutic approach in DLBCL. Submicromolar concentrations of PF-0477736 hindered proliferation in DLBCL cell lines with activated DDR pathway. These results were fully recapitulated with a different CHK inhibitor (AZD-7762). Inhibition of checkpoint kinases induced rapid DNA damage accumulation and apoptosis in DLBCL cell lines and primary cells. These data suggest that pharmacologic inhibition of DDR through targeting of CHK kinases may represent a novel therapeutic strategy in DLBCL.


Asunto(s)
Antineoplásicos/farmacología , Benzodiazepinonas/farmacología , Quinasa de Punto de Control 2/antagonistas & inhibidores , Daño del ADN , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Pirazoles/farmacología , Tiofenos/farmacología , Urea/análogos & derivados , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2/metabolismo , Relación Dosis-Respuesta a Droga , Histonas/metabolismo , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Terapia Molecular Dirigida , Fosforilación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Tiempo , Células Tumorales Cultivadas , Urea/farmacología , Fosfatasas cdc25/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...