Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(22): e202203413, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35319808

RESUMEN

Maturation of [FeFe]-hydrogenase (HydA) involves synthesis of a CO, CN- , and dithiomethylamine (DTMA)-coordinated 2Fe subcluster that is inserted into HydA to make the active hydrogenase. This process requires three maturation enzymes: the radical S-adenosyl-l-methionine (SAM) enzymes HydE and HydG, and the GTPase HydF. In vitro maturation with purified maturation enzymes has been possible only when clarified cell lysate was added, with the lysate presumably providing essential components for DTMA synthesis and delivery. Here we report maturation of [FeFe]-hydrogenase using a fully defined system that includes components of the glycine cleavage system (GCS), but no cell lysate. Our results reveal for the first time an essential role for the aminomethyl-lipoyl-H-protein of the GCS in hydrogenase maturation and the synthesis of the DTMA ligand of the H-cluster. In addition, we show that ammonia is the source of the bridgehead nitrogen of DTMA.


Asunto(s)
Hidrogenasas , Proteínas Hierro-Azufre , Espectroscopía de Resonancia por Spin del Electrón , Hidrogenasas/metabolismo , Ligandos , S-Adenosilmetionina
2.
Dalton Trans ; 50(30): 10405-10422, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34240096

RESUMEN

The organometallic H-cluster of the [FeFe]-hydrogenase consists of a [4Fe-4S] cubane bridged via a cysteinyl thiolate to a 2Fe subcluster ([2Fe]H) containing CO, CN-, and dithiomethylamine (DTMA) ligands. The H-cluster is synthesized by three dedicated maturation proteins: the radical SAM enzymes HydE and HydG synthesize the non-protein ligands, while the GTPase HydF serves as a scaffold for assembly of [2Fe]H prior to its delivery to the [FeFe]-hydrogenase containing the [4Fe-4S] cubane. HydG uses l-tyrosine as a substrate, cleaving it to produce p-cresol as well as the CO and CN- ligands to the H-cluster, although there is some question as to whether these are formed as free diatomics or as part of a [Fe(CO)2(CN)] synthon. Here we show that Clostridium acetobutylicum (C.a.) HydG catalyzes formation of multiple equivalents of free CO at rates comparable to those for CN- formation. Free CN- is also formed in excess molar equivalents over protein. A g = 8.9 EPR signal is observed for C.a. HydG reconstituted to load the 5th "dangler" iron of the auxiliary [4Fe-4S][FeCys] cluster and is assigned to this "dangler-loaded" cluster state. Free CO and CN- formation and the degree of activation of [FeFe]-hydrogenase all occur regardless of dangler loading, but are increased 10-35% in the dangler-loaded HydG; this indicates the dangler iron is not essential to this process but may affect relevant catalysis. During HydG turnover in the presence of myoglobin, the g = 8.9 signal remains unchanged, indicating that a [Fe(CO)2(CN)(Cys)] synthon is not formed at the dangler iron. Mutation of the only protein ligand to the dangler iron, H272, to alanine nearly completely abolishes both free CO formation and hydrogenase activation, however results show this is not due solely to the loss of the dangler iron. In experiments with wild type and H272A HydG, and with different degrees of dangler loading, we observe a consistent correlation between free CO/CN- formation and hydrogenase activation. Taken in full, our results point to free CO/CN-, but not an [Fe(CO)2(CN)(Cys)] synthon, as essential species in hydrogenase maturation.


Asunto(s)
Hidrogenasas , Clostridium acetobutylicum , Proteínas Hierro-Azufre
3.
Angew Chem Int Ed Engl ; 60(9): 4666-4672, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33935588

RESUMEN

Radical S-adenosyl-l-methionine (SAM) enzymes initiate biological radical reactions with the 5'-deoxyadenosyl radical (5'-dAdo•). A [4Fe-4S]+ cluster reductively cleaves SAM to form the Ω organometallic intermediate in which the 5'-deoxyadenosyl moiety is directly bound to the unique iron of the [4Fe-4S] cluster, with subsequent liberation of 5'-dAdo•. Here we present synthesis of the SAM analog S-adenosyl-l-ethionine (SAE) and show SAE is a mechanistically-equivalent SAM-alternative for HydG, both supporting enzymatic turnover of substrate tyrosine and forming the organometallic intermediate Ω. Photolysis of SAE bound to HydG forms an ethyl radical trapped in the active site. The ethyl radical withstands prolonged storage at 77 K and its EPR signal is only partially lost upon annealing at 100 K, making it significantly less reactive than the methyl radical formed by SAM photolysis. Upon annealing above 77K, the ethyl radical adds to the [4Fe-4S]2+ cluster, generating an ethyl-[4Fe-4S]3+ organometallic species termed ΩE.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Etionina/metabolismo , Transactivadores/metabolismo , Biocatálisis , Espectroscopía de Resonancia por Spin del Electrón , Proteínas de Escherichia coli/química , Etionina/análogos & derivados , Etionina/química , Radicales Libres/química , Radicales Libres/metabolismo , Modelos Moleculares , Estructura Molecular , Transactivadores/química
4.
J Am Chem Soc ; 143(1): 335-348, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33372786

RESUMEN

Catalysis by canonical radical S-adenosyl-l-methionine (SAM) enzymes involves electron transfer (ET) from [4Fe-4S]+ to SAM, generating an R3S0 radical that undergoes regioselective homolytic reductive cleavage of the S-C5' bond to generate the 5'-dAdo· radical. However, cryogenic photoinduced S-C bond cleavage has regioselectively yielded either 5'-dAdo· or ·CH3, and indeed, each of the three SAM S-C bonds can be regioselectively cleaved in an RS enzyme. This diversity highlights a longstanding central question: what controls regioselective homolytic S-C bond cleavage upon SAM reduction? We here provide an unexpected answer, founded on our observation that photoinduced S-C bond cleavage in multiple canonical RS enzymes reveals two enzyme classes: in one, photolysis forms 5'-dAdo·, and in another it forms ·CH3. The identity of the cleaved S-C bond correlates with SAM ribose conformation but not with positioning and orientation of the sulfonium center relative to the [4Fe-4S] cluster. We have recognized the reduced-SAM R3S0 radical is a (2E) state with its antibonding unpaired electron in an orbital doublet, which renders R3S0 Jahn-Teller (JT)-active and therefore subject to vibronically induced distortion. Active-site forces induce a JT distortion that localizes the odd electron in a single priority S-C antibond, which undergoes regioselective cleavage. In photolytic cleavage those forces act through control of the ribose conformation and are transmitted to the sulfur via the S-C5' bond, but during catalysis thermally induced conformational changes that enable ET from a cluster iron generate dominant additional forces that specifically select S-C5' for cleavage. This motion also can explain how 5'-dAdo· subsequently forms the organometallic intermediate Ω.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , S-Adenosilmetionina/química , Proteínas Bacterianas/química , Proteínas Bacterianas/efectos de la radiación , Biocatálisis , Dominio Catalítico , Clostridium acetobutylicum/enzimología , Teoría Funcional de la Densidad , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/efectos de la radiación , Luz , Modelos Químicos , Estructura Molecular , Oxidación-Reducción/efectos de la radiación , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/efectos de la radiación , Fotólisis , S-Adenosilmetionina/efectos de la radiación , Thermotoga maritima/enzimología
5.
J Am Chem Soc ; 142(43): 18652-18660, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32966073

RESUMEN

Spore photoproduct lyase is a radical S-adenosyl-l-methionine (SAM) enzyme with the unusual property that addition of SAM to the [4Fe-4S]1+ enzyme absent substrate results in rapid electron transfer to SAM with accompanying homolytic S-C5' bond cleavage. Herein, we demonstrate that this unusual reaction forms the organometallic intermediate Ω in which the unique Fe atom of the [4Fe-4S] cluster is bound to C5' of the 5'-deoxyadenosyl radical (5'-dAdo•). During catalysis, homolytic cleavage of the Fe-C5' bond liberates 5'-dAdo• for reaction with substrate, but here, we use Ω formation without substrate to determine the thermal stability of Ω. The reaction of Geobacillus thermodenitrificans SPL (GtSPL) with SAM forms Ω within ∼15 ms after mixing. By monitoring the decay of Ω through rapid freeze-quench trapping at progressively longer times we find an ambient temperature decay time of the Ω Fe-C5' bond of τ ≈ 5-6 s, likely shortened by enzymatic activation as is the case with the Co-C5' bond of B12. We have further used hand quenching at times up to 10 min, and thus with multiple SAM turnovers, to probe the fate of the 5'-dAdo• radical liberated by Ω. In the absence of substrate, Ω undergoes low-probability conversion to a stable protein radical. The WT enzyme with valine at residue 172 accumulates a Val•; mutation of Val172 to isoleucine or cysteine results in accumulation of an Ile• or Cys• radical, respectively. The structures of the radical in WT, V172I, and V172C variants have been established by detailed EPR/DFT analyses.


Asunto(s)
Radicales Libres/química , Proteínas/química , S-Adenosilmetionina/química , Dominio Catalítico , Teoría Funcional de la Densidad , Desoxiadenosinas/química , Espectroscopía de Resonancia por Spin del Electrón , Geobacillus/enzimología , Proteínas Hierro-Azufre/química , Modelos Moleculares , Proteínas/genética , Proteínas/metabolismo , S-Adenosilmetionina/metabolismo
6.
J Am Chem Soc ; 141(40): 16117-16124, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31509404

RESUMEN

Radical SAM (RS) enzymes use S-adenosyl-l-methionine (SAM) and a [4Fe-4S] cluster to initiate a broad spectrum of radical transformations throughout all kingdoms of life. We report here that low-temperature photoinduced electron transfer from the [4Fe-4S]1+ cluster to bound SAM in the active site of the hydrogenase maturase RS enzyme, HydG, results in specific homolytic cleavage of the S-CH3 bond of SAM, rather than the S-C5' bond as in the enzyme-catalyzed (thermal) HydG reaction. This result is in stark contrast to a recent report in which photoinduced ET in the RS enzyme pyruvate formate-lyase activating enzyme cleaved the S-C5' bond to generate a 5'-deoxyadenosyl radical, and provides the first direct evidence for homolytic S-CH3 bond cleavage in a RS enzyme. Photoinduced ET in HydG generates a trapped •CH3 radical, as well as a small population of an organometallic species with an Fe-CH3 bond, denoted ΩM. The •CH3 radical is surprisingly found to exhibit rotational diffusion in the HydG active site at temperatures as low as 40 K, and is rapidly quenched: whereas 5'-dAdo• is stable indefinitely at 77 K, •CH3 quenches with a half-time of ∼2 min at this temperature. The rapid quenching and rotational/translational freedom of •CH3 shows that enzymes would be unable to harness this radical as a regio- and stereospecific H atom abstractor during catalysis, in contrast to the exquisite control achieved with the enzymatically generated 5'-dAdo•.


Asunto(s)
Hidrolasas/química , Proteínas Hierro-Azufre/química , Metano/análogos & derivados , S-Adenosilmetionina/química , Acetiltransferasas/química , Acetiltransferasas/metabolismo , Dominio Catalítico , Transporte de Electrón , Activación Enzimática , Hidrolasas/metabolismo , Metano/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fotólisis
7.
J Am Chem Soc ; 141(30): 12139-12146, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31274303

RESUMEN

The 5'-deoxyadenosyl radical (5'-dAdo·) abstracts a substrate H atom as the first step in radical-based transformations catalyzed by adenosylcobalamin-dependent and radical S-adenosyl-l-methionine (RS) enzymes. Notwithstanding its central biological role, 5'-dAdo· has eluded characterization despite efforts spanning more than a half-century. Here, we report generation of 5'-dAdo· in a RS enzyme active site at 12 K using a novel approach involving cryogenic photoinduced electron transfer from the [4Fe-4S]+ cluster to the coordinated S-adenosylmethionine (SAM) to induce homolytic S-C5' bond cleavage. We unequivocally reveal the structure of this long-sought radical species through the use of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies with isotopic labeling, complemented by density-functional computations: a planar C5' (2pπ) radical (∼70% spin occupancy); the C5'(H)2 plane is rotated by ∼37° (experiment)/39° (DFT) relative to the C5'-C4'-(C4'-H) plane, placing a C5'-H antiperiplanar to the ribose-ring oxygen, which helps stabilize the radical against elimination of the 4'-H. The agreement between φ from experiment and in vacuo DFT indicates that the conformation is intrinsic to 5-dAdo· itself, and not determined by its environment.


Asunto(s)
Desoxiadenosinas/química , Adenosilmetionina Descarboxilasa/química , Adenosilmetionina Descarboxilasa/metabolismo , Cobamidas/química , Cobamidas/metabolismo , Desoxiadenosinas/metabolismo , Radicales Libres/química , Radicales Libres/metabolismo , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico
8.
Methods Enzymol ; 606: 269-318, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30097096

RESUMEN

The radical SAM enzyme superfamily is large and diverse, with ever-increasing numbers of examples of characterized reactions. This chapter focuses on the methodology we have developed over the last 25 years for working with these enzymes, with the specific examples discussed being the pyruvate formate-lyase activating enzyme (PFL-AE) and lysine 2,3-aminomutase (LAM). Both enzymes are purified from overexpressing Escherichia coli, but differ in that PFL-AE is expressed without an affinity tag and does not require iron-sulfur cluster reconstitution, while LAM purification is carried out through use of a His6 affinity tag and the enzyme benefits from cluster reconstitution. Because of radical SAM enzymes' catalytic need for a [4Fe-4S] cluster, we present methods for characterization and incorporation of a full [4Fe-4S] cluster in addition to enzyme activity assay protocols. Synthesis of SAM (S-adenosyl-l-methionine) and its analogs have played an important role in our mechanistic studies of radical SAM enzymes, and their synthetic methods are also presented in detail.


Asunto(s)
Pruebas de Enzimas/métodos , Enzimas/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferasas Intramoleculares/metabolismo , Metionina Adenosiltransferasa/metabolismo , S-Adenosilmetionina/metabolismo , Acetiltransferasas , Enzimas/aislamiento & purificación , Proteínas de Escherichia coli/aislamiento & purificación , Transferasas Intramoleculares/aislamiento & purificación , Metionina Adenosiltransferasa/aislamiento & purificación , Oxidación-Reducción , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
9.
J Am Chem Soc ; 140(28): 8634-8638, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29954180

RESUMEN

Radical S-adenosyl-l-methionine (SAM) enzymes comprise a vast superfamily catalyzing diverse reactions essential to all life through homolytic SAM cleavage to liberate the highly reactive 5'-deoxyadenosyl radical (5'-dAdo·). Our recent observation of a catalytically competent organometallic intermediate Ω that forms during reaction of the radical SAM (RS) enzyme pyruvate formate-lyase activating-enzyme (PFL-AE) was therefore quite surprising, and led to the question of its broad relevance in the superfamily. We now show that Ω in PFL-AE forms as an intermediate under a variety of mixing order conditions, suggesting it is central to catalysis in this enzyme. We further demonstrate that Ω forms in a suite of RS enzymes chosen to span the totality of superfamily reaction types, implicating Ω as essential in catalysis across the RS superfamily. Finally, EPR and electron nuclear double resonance spectroscopy establish that Ω involves an Fe-C5' bond between 5'-dAdo· and the [4Fe-4S] cluster. An analogous organometallic bond is found in the well-known adenosylcobalamin (coenzyme B12) cofactor used to initiate radical reactions via a 5'-dAdo· intermediate. Liberation of a reactive 5'-dAdo· intermediate via homolytic metal-carbon bond cleavage thus appears to be similar for Ω and coenzyme B12. However, coenzyme B12 is involved in enzymes catalyzing only a small number (∼12) of distinct reactions, whereas the RS superfamily has more than 100 000 distinct sequences and over 80 reaction types characterized to date. The appearance of Ω across the RS superfamily therefore dramatically enlarges the sphere of bio-organometallic chemistry in Nature.


Asunto(s)
Bacterias/enzimología , Cobamidas/metabolismo , Desoxiadenosinas/metabolismo , Enzimas/metabolismo , S-Adenosilmetionina/metabolismo , Acetiltransferasas , Bacterias/química , Bacterias/metabolismo , Biocatálisis , Cobamidas/química , Desoxiadenosinas/química , Espectroscopía de Resonancia por Spin del Electrón , Enzimas/química , Escherichia coli/química , Escherichia coli/enzimología , Escherichia coli/metabolismo , Modelos Moleculares , Conformación Proteica , S-Adenosilmetionina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...