Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34576406

RESUMEN

The study was carried out with the aim to demonstrate the applicability of a combined chemical-electrochemical process for the dismantling of waste printed circuit boards (WPCBs) created from different types of electronic equipment. The concept implies a simple and less polluting process that allows the chemical dismantling of WPCBs with the simultaneous recovery of copper from the leaching solution and the regeneration of the leaching agent. In order to assess the performance of the dismantling process, various tests were performed on different types of WPCBs using the 0.3 M FeCl3 in 0.5 M HCl leaching system. The experimental results show that, through the leaching process, the electronic components (EC) together with other fractions can be efficiently dismounted from the surface of WPCBs, with the parallel electrowinning of copper from the copper rich leaching solution. In addition, the process was scaled up for the dismantling of 100 kg/h WPCBs and modeled and simulated using process flow modelling software ChemCAD in order to assess the impact of all steps and equipment on the technical and environmental performance of the overall process. According to the results, the dismantling of 1 kg of WPCBs requires a total energy of 0.48 kWh, and the process can be performed with an overall low environmental impact based on the obtained general environmental indexes (GEIs) values.

2.
Materials (Basel) ; 14(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809892

RESUMEN

This paper presents a novel approach for the recovery of lead from waste cathode-ray tube (CRT) glass by applying a combined chemical-electrochemical process which allows the simultaneous recovery of Pb from waste CRT glass and electrochemical regeneration of the leaching agent. The optimal operating conditions were identified based on the influence of leaching agent concentration, recirculation flow rate and current density on the main technical performance indicators. The experimental results demonstrate that the process is the most efficient at 0.6 M acetic acid concentration, flow rate of 45 mL/min and current density of 4 mA/cm2. The mass balance data corresponding to the recycling of 10 kg/h waste CRT glass in the identified optimal operating conditions was used for the environmental assessment of the process. The General Effect Indices (GEIs), obtained through the Biwer Heinzle method for the input and output streams of the process, indicate that the developed recovery process not only achieve a complete recovery of lead but it is eco-friendly as well.

3.
ACS Appl Mater Interfaces ; 9(38): 32565-32576, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28872817

RESUMEN

Ovarian cancer is a common cause of cancer death in women and is associated with the highest mortality rates of all gynecological malignancies. Carboplatin (CBP) is the most used cytotoxic agent in the treatment of ovarian cancer. Herein, we design and assess a CBP nanotherapeutic delivery system which allows combinatorial functionalities of chemotherapy, pH sensing, and multimodal traceable properties inside live NIH:OVCAR-3 ovarian cancer cells. In our design, a pH-sensitive Raman reporter, 4-mercaptobenzoic acid (4MBA) is anchored onto the surface of chitosan-coated silver nanotriangles (chit-AgNTs) to generate a robust surface-enhanced Raman scattering (SERS) traceable system. To endow this nanoplatform with chemotherapeutic abilities, CBP is then loaded to 4MBA-labeled chit-AgNTs (4MBA-chit-AgNTs) core under alkaline conditions. The uptake and tracking potential of CBP-4MBA-chit-AgNTs at different Z-depths inside live ovarian cancer cells is evaluated by dark-field and differential interference contrast (DIC) microscopy. The ability of CBP-4MBA-chit-AgNTs to operate as near-infrared (NIR)-responsive contrast agents is validated using two noninvasive techniques: two-photon (TP)-excited fluorescence lifetime imaging microscopy (FLIM) and confocal Raman microscopy (CRM). The most informative data about the precise localization of nanocarriers inside cells correlated with intracellular pH sensing is provided by multivariate analysis of Raman spectra collected by scanning CRM. The in vitro cell proliferation assay clearly shows the effectiveness of the prepared nanocarriers in inhibiting the growth of NIH:OVCAR-3 cancer cells. We anticipate that this class of nanocarriers holds great promise for application in image-guided ovarian cancer chemotherapy.


Asunto(s)
Nanoestructuras , Carboplatino , Línea Celular Tumoral , Quitosano , Femenino , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Ováricas , Plata , Espectrometría Raman
4.
Waste Manag ; 40: 136-43, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25816768

RESUMEN

The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe(3+) combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%.


Asunto(s)
Cobre/química , Electroquímica/métodos , Residuos Electrónicos/análisis , Metales/química , Reciclaje , Cloruros/química , Ecología , Electrodos , Diseño de Equipo , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Oxígeno/química , Soluciones , Estrés Mecánico , Termodinámica
5.
J Hazard Mater ; 273: 215-21, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24747374

RESUMEN

The present study aims to develop an eco-friendly chemical-electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75kWh/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples.


Asunto(s)
Computadores , Cobre/química , Residuos Electrónicos , Oro/química , Reciclaje/métodos , Cloruros/química , Técnicas Electroquímicas , Compuestos Férricos/química , Oxidación-Reducción
6.
Metallomics ; 6(4): 833-44, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24413432

RESUMEN

In cancer therapy the platinum-based drugs are used frequently with a good clinical outcome, but besides unwanted side effects which occur, the tumour cells subjected to treatment are prone to develop tolerance or even multidrug resistance (MDR). Metal compounds with a central atom other than platinum are efficient in targeting the chemoresistant cells, therefore the biological outcome of two recently synthesized gallium phosphinoarylbisthiolato complexes was studied, having the formula [X][Ga{PPh(2-SC6H4)2-κ(3)S,S',P}{PPh(2-SC6H4)2-κ(2)S,S'}] where [X] is either the NEt3H (1) or PPh4 (2) cation. Compounds 1 and 2 display in vitro cytotoxicity against both platinum-sensitive and platinum-resistant cell lines (A2780 and A2780cis). Morphological and ultrastructural evidence points toward their capacity to impair tumour cells survival. This behaviour is based on malignant cells capacity to selectively intake gallium, and to bind to the cellular DNA. They are able to cause massive DNA damage in treated cancer cells, focusing on 7-methylguanine and 8-oxoguanine sites and oxidizing the pyrimidine bases; this leads to early apoptosis of a significant percent of treated cells. The intrinsic and extrinsic apoptotic pathways are influenced through the modulation of gene expression following the treatment with complexes 1 and 2, which accompanies the negative regulation of P-glycoprotein 1 (Pgp-1), an important cellular ABC-type transporter from the multidrug resistance (MDR) family. The studied Ga(III) compounds demonstrated the capacity to counteract the chemoresistance mechanisms in the tumours defiant to standard drug action. Compound 2 shows a good anticancer potential and it could represent an alternative to platinum-based drugs especially in the situation of standard treatment failure.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Galio/farmacología , Neoplasias/tratamiento farmacológico , Transportadoras de Casetes de Unión a ATP/metabolismo , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Complejos de Coordinación/química , Daño del ADN/efectos de los fármacos , Galio/química , Humanos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA