Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34519268

RESUMEN

The vertebrate-specific DEP domain-containing mTOR interacting protein (DEPTOR), an oncoprotein or tumor suppressor, has important roles in metabolism, immunity, and cancer. It is the only protein that binds and regulates both complexes of mammalian target of rapamycin (mTOR), a central regulator of cell growth. Biochemical analysis and cryo-EM reconstructions of DEPTOR bound to human mTOR complex 1 (mTORC1) and mTORC2 reveal that both structured regions of DEPTOR, the PDZ domain and the DEP domain tandem (DEPt), are involved in mTOR interaction. The PDZ domain binds tightly with mildly activating effect, but then acts as an anchor for DEPt association that allosterically suppresses mTOR activation. The binding interfaces of the PDZ domain and DEPt also support further regulation by other signaling pathways. A separate, substrate-like mode of interaction for DEPTOR phosphorylation by mTOR complexes rationalizes inhibition of non-stimulated mTOR activity at higher DEPTOR concentrations. The multifaceted interplay between DEPTOR and mTOR provides a basis for understanding the divergent roles of DEPTOR in physiology and opens new routes for targeting the mTOR-DEPTOR interaction in disease.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mariposas Nocturnas , Dominios Proteicos , Serina-Treonina Quinasas TOR/genética
2.
Mol Cell ; 81(11): 2403-2416.e5, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33852892

RESUMEN

The activation of cap-dependent translation in eukaryotes requires multisite, hierarchical phosphorylation of 4E-BP by the 1 MDa kinase mammalian target of rapamycin complex 1 (mTORC1). To resolve the mechanism of this hierarchical phosphorylation at the atomic level, we monitored by NMR spectroscopy the interaction of intrinsically disordered 4E binding protein isoform 1 (4E-BP1) with the mTORC1 subunit regulatory-associated protein of mTOR (Raptor). The N-terminal RAIP motif and the C-terminal TOR signaling (TOS) motif of 4E-BP1 bind separate sites in Raptor, resulting in avidity-based tethering of 4E-BP1. This tethering orients the flexible central region of 4E-BP1 toward the mTORC1 kinase site for phosphorylation. The structural constraints imposed by the two tethering interactions, combined with phosphorylation-induced conformational switching of 4E-BP1, explain the hierarchy of 4E-BP1 phosphorylation by mTORC1. Furthermore, we demonstrate that mTORC1 recognizes both free and eIF4E-bound 4E-BP1, allowing rapid phosphorylation of the entire 4E-BP1 pool and efficient activation of translation. Finally, our findings provide a mechanistic explanation for the differential rapamycin sensitivity of the 4E-BP1 phosphorylation sites.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Ciclo Celular/química , Factor 4E Eucariótico de Iniciación/química , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Proteína Reguladora Asociada a mTOR/química , Serina-Treonina Quinasas TOR/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaetomium/química , Chaetomium/genética , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Moleculares , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal , Homología Estructural de Proteína , Especificidad por Sustrato , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
3.
Sci Adv ; 6(45)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33158864

RESUMEN

The protein kinase mammalian target of rapamycin (mTOR) is the central regulator of cell growth. Aberrant mTOR signaling is linked to cancer, diabetes, and neurological disorders. mTOR exerts its functions in two distinct multiprotein complexes, mTORC1 and mTORC2. Here, we report a 3.2-Å resolution cryo-EM reconstruction of mTORC2. It reveals entangled folds of the defining Rictor and the substrate-binding SIN1 subunits, identifies the carboxyl-terminal domain of Rictor as the source of the rapamycin insensitivity of mTORC2, and resolves mechanisms for mTORC2 regulation by complex destabilization. Two previously uncharacterized small-molecule binding sites are visualized, an inositol hexakisphosphate (InsP6) pocket in mTOR and an mTORC2-specific nucleotide binding site in Rictor, which also forms a zinc finger. Structural and biochemical analyses suggest that InsP6 and nucleotide binding do not control mTORC2 activity directly but rather have roles in folding or ternary interactions. These insights provide a firm basis for studying mTORC2 signaling and for developing mTORC2-specific inhibitors.


Asunto(s)
Proteínas Portadoras , Serina-Treonina Quinasas TOR , Proteínas Portadoras/metabolismo , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Nucleótidos/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo
4.
Curr Opin Struct Biol ; 49: 177-189, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29625383

RESUMEN

The phosphatidylinositol 3-kinase related protein kinases (PIKKs) are key to the regulation of a variety of eukaryotic cellular processes including DNA repair and growth regulation. While these massive proteins had long resisted structural analysis, recent advances in electron cryo-microscopy have now facilitated structural analysis of the major examples of PIKKs, including mTOR, DNA-PK, ATM, ATR and TRAPP/Tra1. In these PIKKs, the carboxy-terminal kinase domains and their proximal regions are structurally conserved. The structural organization of their extensive amino-terminal repeat regions, however, as well as their oligomeric organization and their interactions with accessory proteins, differ markedly amongst PIKKs. This architectural divergence provides the structural basis for the complex regulatory roles and functional diversity of PIKKs.


Asunto(s)
Fosfatidilinositol 3-Quinasa/química , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Cromatina/química , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína , Secuencias Repetitivas de Aminoácido , Sirolimus/química , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/química , Serina-Treonina Quinasas TOR/metabolismo
5.
Elife ; 72018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29424687

RESUMEN

The mammalian target of rapamycin (mTOR) is a key protein kinase controlling cellular metabolism and growth. It is part of the two structurally and functionally distinct multiprotein complexes mTORC1 and mTORC2. Dysregulation of mTOR occurs in diabetes, cancer and neurological disease. We report the architecture of human mTORC2 at intermediate resolution, revealing a conserved binding site for accessory proteins on mTOR and explaining the structural basis for the rapamycin insensitivity of the complex.


Asunto(s)
Microscopía por Crioelectrón , Diana Mecanicista del Complejo 2 de la Rapamicina/química , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
6.
Elife ; 62017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28266914

RESUMEN

A domain called the 'Conserved region in the middle' is responsible for target recognition in the TORC2 complex in fission yeast and the mTORC2 complex in mammals.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Animales , Proteínas Portadoras , Diana Mecanicista del Complejo 2 de la Rapamicina , Especificidad por Sustrato , Ubiquitina
7.
Nat Commun ; 7: 11196, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27073141

RESUMEN

Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.


Asunto(s)
Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia Conservada , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Fosforilación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
8.
Science ; 351(6268): 48-52, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26678875

RESUMEN

Target of rapamycin (TOR), a conserved protein kinase and central controller of cell growth, functions in two structurally and functionally distinct complexes: TORC1 and TORC2. Dysregulation of mammalian TOR (mTOR) signaling is implicated in pathologies that include diabetes, cancer, and neurodegeneration. We resolved the architecture of human mTORC1 (mTOR with subunits Raptor and mLST8) bound to FK506 binding protein (FKBP)-rapamycin, by combining cryo-electron microscopy at 5.9 angstrom resolution with crystallographic studies of Chaetomium thermophilum Raptor at 4.3 angstrom resolution. The structure explains how FKBP-rapamycin and architectural elements of mTORC1 limit access to the recessed active site. Consistent with a role in substrate recognition and delivery, the conserved amino-terminal domain of Raptor is juxtaposed to the kinase active site.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Complejos Multiproteicos/química , Serina-Treonina Quinasas TOR/química , Proteínas de Unión a Tacrolimus/química , Dominio Catalítico , Microscopía por Crioelectrón , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteína Reguladora Asociada a mTOR , Especificidad por Sustrato , Homóloga LST8 de la Proteína Asociada al mTOR
9.
Elife ; 42015 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-26188084

RESUMEN

Polo-like kinases (PLK) are eukaryotic regulators of cell cycle progression, mitosis and cytokinesis; PLK4 is a master regulator of centriole duplication. Here, we demonstrate that the SCL/TAL1 interrupting locus (STIL) protein interacts via its coiled-coil region (STIL-CC) with PLK4 in vivo. STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region. Structure determination of free PLK4-PB3 and its STIL-CC complex via NMR and crystallography reveals a novel mode of Polo-box-peptide interaction mimicking coiled-coil formation. In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding. We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication.


Asunto(s)
Centriolos/genética , Centriolos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Cristalografía por Rayos X , Análisis Mutacional de ADN , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Espectroscopía de Resonancia Magnética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química
10.
Biochem Soc Trans ; 41(4): 889-95, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23863151

RESUMEN

The atypical serine/threonine kinase mTOR (mammalian target of rapamycin) is a central regulator of cell growth and metabolism. mTOR is part of two multisubunit signalling complexes, mTORC1 and mTORC2. Although many aspects of mTOR signalling are understood, the lack of high-resolution structures impairs a detailed understanding of complex assembly, function and regulation. The structure of the kinase domain is of special interest for the development of mTOR inhibitors as anti-cancer agents. A homology model of the mTOR kinase domain was derived from the structure of PI3Ks (phosphoinositide 3-kinases). More recently, the crystal structure of the catalytic domain of human mTOR was determined, providing long-awaited structural insight into the architecture of mTOR. Interestingly, the homology model predicted several aspects of the crystal structure. In the present paper, we revisit the homology model in the context of the now available crystal structure of the mTOR kinase domain.


Asunto(s)
Secuencia Conservada , Serina-Treonina Quinasas TOR/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Transducción de Señal , Serina-Treonina Quinasas TOR/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA