Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37238580

RESUMEN

Large corporations, government entities and institutions such as hospitals and census bureaus routinely collect our personal and sensitive information for providing services. A key technological challenge is designing algorithms for these services that provide useful results, while simultaneously maintaining the privacy of the individuals whose data are being shared. Differential privacy (DP) is a cryptographically motivated and mathematically rigorous approach for addressing this challenge. Under DP, a randomized algorithm provides privacy guarantees by approximating the desired functionality, leading to a privacy-utility trade-off. Strong (pure DP) privacy guarantees are often costly in terms of utility. Motivated by the need for a more efficient mechanism with better privacy-utility trade-off, we propose Gaussian FM, an improvement to the functional mechanism (FM) that offers higher utility at the expense of a weakened (approximate) DP guarantee. We analytically show that the proposed Gaussian FM algorithm can offer orders of magnitude smaller noise compared to the existing FM algorithms. We further extend our Gaussian FM algorithm to decentralized-data settings by incorporating the CAPE protocol and propose capeFM. Our method can offer the same level of utility as its centralized counterparts for a range of parameter choices. We empirically show that our proposed algorithms outperform existing state-of-the-art approaches on synthetic and real datasets.

2.
Sensors (Basel) ; 23(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36616788

RESUMEN

The fifth-generation (5G) wireless network is visualized to offer many types of services with low latency requirements in Internet of Things (IoT) networks. However, the computational capabilities of IoT nodes are not enough to process complex tasks in real time. To solve this problem, multi-access edge computing (MEC) has emerged as an effective solution that will allow IoT nodes to completely or partially offload their computational tasks to MEC servers. However, the large communication delay at a low transmission rate for nodes far from the access point (AP) makes this offloading less meaningful. This paper studies joint multi-task partial offloading from multiple IoT nodes to a common MEC server collocated with an AP, and it uses relay selection to help nodes far from the AP. The computation time of all tasks is minimized by adaptive task division and resource allocation (bandwidth and computation resource), and it is solved with an evolutionary algorithm. The simulation results confirm that the proposed method with both relay selection and adaptive bandwidth allocation outperforms the methods with neither or only one function.


Asunto(s)
Internet de las Cosas , Algoritmos , Evolución Biológica , Simulación por Computador , Asignación de Recursos
3.
IEEE Trans Signal Process ; 69: 6355-6370, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35755147

RESUMEN

Blind source separation algorithms such as independent component analysis (ICA) are widely used in the analysis of neuroimaging data. To leverage larger sample sizes, different data holders/sites may wish to collaboratively learn feature representations. However, such datasets are often privacy-sensitive, precluding centralized analyses that pool the data at one site. In this work, we propose a differentially private algorithm for performing ICA in a decentralized data setting. Due to the high dimension and small sample size, conventional approaches to decentralized differentially private algorithms suffer in terms of utility. When centralizing the data is not possible, we investigate the benefit of enabling limited collaboration in the form of generating jointly distributed random noise. We show that such (anti) correlated noise improves the privacy-utility trade-off, and can reach the same level of utility as the corresponding non-private algorithm for certain parameter choices. We validate this benefit using synthetic and real neuroimaging datasets. We conclude that it is possible to achieve meaningful utility while preserving privacy, even in complex signal processing systems.

4.
IEEE J Sel Top Signal Process ; 12(6): 1449-1464, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31595179

RESUMEN

In many signal processing and machine learning applications, datasets containing private information are held at different locations, requiring the development of distributed privacy-preserving algorithms. Tensor and matrix factorizations are key components of many processing pipelines. In the distributed setting, differentially private algorithms suffer because they introduce noise to guarantee privacy. This paper designs new and improved distributed and differentially private algorithms for two popular matrix and tensor factorization methods: principal component analysis (PCA) and orthogonal tensor decomposition (OTD). The new algorithms employ a correlated noise design scheme to alleviate the effects of noise and can achieve the same noise level as the centralized scenario. Experiments on synthetic and real data illustrate the regimes in which the correlated noise allows performance matching with the centralized setting, outperforming previous methods and demonstrating that meaningful utility is possible while guaranteeing differential privacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA