Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 13(7): 2029-2037, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38885191

RESUMEN

Synthetic viral nanostructures are useful as materials for analyzing the biological behavior of natural viruses and as vaccine materials. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped virus embedding a spike (S) protein involved in host cell infection. Although nanomaterials modified with an S protein without an envelope membrane have been developed, they are considered unsuitable for stability and functionality. We previously constructed an enveloped viral replica complexed with a cationic lipid bilayer and an anionic artificial viral capsid self-assembled from ß-annulus peptides. In this study, we report the first example of an enveloped viral replica equipped with an S protein derived from SARS-CoV-2. Interestingly, even the S protein equipped on the enveloped viral replica bound strongly to the free angiotensin-converting enzyme 2 (ACE2) receptor as well as ACE2 localized on the cell membrane.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , SARS-CoV-2/metabolismo , Humanos , COVID-19/virología , Membrana Dobles de Lípidos/metabolismo , Membrana Dobles de Lípidos/química , Envoltura Viral/metabolismo , Nanoestructuras/química
2.
Sci Technol Adv Mater ; 25(1): 2347191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903411

RESUMEN

The budding of human immunodeficiency virus from an infected host cell is induced by the modification of structural proteins bearing long-chain fatty acids, followed by their anchoring to the cell membrane. Although many model budding systems using giant unilamellar vesicles (GUVs) induced by various stimuli have been developed, constructing an artificial viral budding system of GUVs using only synthesized molecules remains challenging. Herein, we report the construction of an artificial viral capsid budding system from a lipid bilayer of GUV. The C-terminus of the ß-annulus peptide was modified using an octyl chain as an alkyl anchor via a disulfide bond. The self-assembly of the ß-annulus peptide with an octyl chain formed an artificial viral capsid aggregate. The fluorescence imaging and transmission electron microscopy observations revealed that the addition of the tetramethylrhodamine (TMR)-labeled octyl chain-bearing ß-annulus peptide to the outer aqueous phase of GUV induced the budding of the capsid-encapsulated daughter vesicle outside-to-inside the mother GUV. Conversely, the encapsulation of the TMR-labeled octyl chain-bearing ß-annulus peptide in the inner aqueous phase of GUV induced the budding of the capsid-encapsulated daughter vesicle inside-to-outside the mother GUV. Contrarily, the addition of the TMR-labeled ß-annulus peptide to GUV barely induced budding. It was demonstrated that the higher the membrane fluidity of GUV, the more likely budding would be induced by the addition of the alkyl anchor-modified artificial viral capsid. The simple virus-mimicking material developed in this study, which buds off through membrane anchoring, can provide physicochemical insights into the mechanisms of natural viral budding from cells.


Construction of an artificial viral budding system of GUVs using only synthesized molecules remains challenging. This study firstly demonstrates that budding outside-to-inside and inside-to-outside GUVs are induced by addition of alkyl anchor-modified artificial viral capsid.

3.
ACS Synth Biol ; 13(6): 1842-1850, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38729919

RESUMEN

In-cell self-assembly of natural viral capsids is an event that can be visualized under transmission electron microscopy (TEM) observations. By mimicking the self-assembly of natural viral capsids, various artificial protein- and peptide-based nanocages were developed; however, few studies have reported the in-cell self-assembly of such nanocages. Our group developed a ß-Annulus peptide that can form a nanocage called artificial viral capsid in vitro, but in-cell self-assembly of the capsid has not been achieved. Here, we designed an artificial viral capsid decorated with a fluorescent protein, StayGold, to visualize in-cell self-assembly. Fluorescence anisotropy measurements and fluorescence resonance energy transfer imaging, in addition to TEM observations of the cells and super-resolution microscopy, revealed that StayGold-conjugated ß-Annulus peptides self-assembled into the StayGold-decorated artificial viral capsid in a cell. Using these techniques, we achieved the in-cell self-assembly of an artificial viral capsid.


Asunto(s)
Proteínas de la Cápside , Cápside , Transferencia Resonante de Energía de Fluorescencia , Péptidos , Péptidos/química , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Microscopía Electrónica de Transmisión , Polarización de Fluorescencia , Ensamble de Virus
4.
Sci Rep ; 13(1): 19934, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968508

RESUMEN

Membrane fusion is an essential step for the entry of enveloped viruses, such as human immunodeficiency virus and influenza virus, into the host cell, often triggered by the binding of membrane proteins on the viral envelope to host cell membrane. Recently, external stimuli was shown to trigger membrane fusion in an artificial system. Direct observation of artificial membrane fusion using a giant unilamellar vesicle (GUV), which is similar in size to a cell, is useful as a biological model system. However, there are no model systems for studying membrane fusion of enveloped viruses with host cells. Here, we report a supramolecular model system for viral entry into a GUV or cell through membrane fusion. The system was constructed by complexing a cationic lipid bilayer on an anionic artificial viral capsid, self-assembled from viral ß-annulus peptides. We demonstrate that the cationic enveloped artificial viral capsid electrostatically interacts with the anionic GUV or cell, and the capsid enters the GUV or cell through membrane fusion. The model system established in this study will be important for analyzing membrane fusion during infection of a natural virus.


Asunto(s)
Fusión de Membrana , Virus , Humanos , Virus/metabolismo , Internalización del Virus , Péptidos/metabolismo , Proteínas de la Cápside/metabolismo
5.
Blood Adv ; 7(22): 7017-7027, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37792826

RESUMEN

The importance of genetic diagnosis for patients with hemophilia has been recently demonstrated. However, the pathological variant cannot be identified in some patients. Here, we aimed to identify the pathogenic intronic variant causing hemophilia A using induced pluripotent stem cells (iPSCs) from patients and genome editing. We analyzed siblings with moderate hemophilia A and without abnormalities in the F8 exon. Next-generation sequencing of the entire F8 revealed 23 common intron variants. Variant effect predictor software indicated that the deep intronic variant at c.5220-8563A>G (intron 14) might act as a splicing acceptor. We developed iPSCs from patients and used genome editing to insert the elongation factor 1α promoter to express F8 messenger RNA (mRNA). Then, we confirmed the existence of abnormal F8 mRNA derived from aberrant splicing, resulting in a premature terminal codon as well as a significant reduction in F8 mRNA in iPSCs due to nonsense-mediated RNA decay. Gene repair by genome editing recovered whole F8 mRNA expression. Introduction of the intron variant into human B-domain-deleted F8 complementary DNA suppressed factor VIII (FVIII) activity and produced abnormal FVIII lacking the light chain in HEK293 cells. Furthermore, genome editing of the intron variant restored FVIII production. In summary, we have directly proven that the deep intronic variant in F8 results in aberrant splicing, leading to abnormal mRNA and nonsense-mediated RNA decay. Additionally, genome editing targeting the variant restored F8 mRNA and FVIII production. Our approach could be useful not only for identifying causal variants but also for verifying the therapeutic effect of personalized genome editing.


Asunto(s)
Hemofilia A , Hemostáticos , Células Madre Pluripotentes Inducidas , Humanos , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia A/diagnóstico , Edición Génica , Células Madre Pluripotentes Inducidas/metabolismo , Células HEK293 , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Int J Hematol ; 118(5): 577-588, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37751038

RESUMEN

There is no established method for differentiating acquired hemophilia A (AHA) from lupus anticoagulant (LA) positivity because both present with prolonged activated partial thromboplastin time. We compared various parameters of rotational thromboelastometry (ROTEM), thrombin generation assay (TGA), and clot waveform analysis (CWA) in patients with AHA (n = 10) and LA (n = 44). Compared with AHA, possible (n = 12) and definite (n = 32) LA showed significantly shorter clotting time (CT) in NATEM mode of ROTEM (> 3600 vs. 501/533). In TGA, peak height was significantly lower in AHA (16 vs. 242/174 nM). In CWA, CT was significantly longer (81 vs. 36/41 s) and Ad|min1| was lower (2.1 vs. 8.7/6.7) in AHA. Notably, CT by NATEM and peak height in TGA completely discriminated between AHA and LA, whereas Ad|min1| did not discriminate between them in 4 cases of AHA and 1 of LA. Comparison of 3 patients with both AHA and LA against a patient with only LA and markedly low FVIII activity (3.5%) showed that both CT by NATEM and peak height of TGA precisely classified the former 3 cases as AHA and the latter 1 case as LA, whereas Ad|min1| classified all 4 cases as AHA. ROTEM and TGA can comparably distinguish between AHA and LA.


Asunto(s)
Síndrome Antifosfolípido , Hemofilia A , Humanos , Hemofilia A/complicaciones , Hemofilia A/diagnóstico , Inhibidor de Coagulación del Lupus , Tiempo de Tromboplastina Parcial , Pruebas de Coagulación Sanguínea/métodos , Trombina
8.
J Am Chem Soc ; 145(29): 15838-15847, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37344812

RESUMEN

We report a promising cancer vaccine candidate comprising antigen/adjuvant-displaying enveloped viral replica as a novel vaccine platform. The artificial viral capsid, which consists of a self-assembled ß-annulus peptide conjugated with an HER2-derived antigenic CH401 peptide, was enveloped within a lipid bilayer containing the lipidic adjuvant α-GalCer. The use of an artificial viral capsid as a scaffold enabled precise control of its size to ∼100 nm, which is generally considered to be optimal for delivery to lymph nodes. The encapsulation of the anionically charged capsid by a cationic lipid bilayer dramatically improved its stability and converted its surface charge to cationic, enhancing its uptake by dendritic cells. The developed CH401/α-GalCer-displaying enveloped viral replica exhibited remarkable antibody-production activity. This study represents a pioneering example of precise vaccine design through bottom-up construction and opens new avenues for the development of effective vaccines.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Membrana Dobles de Lípidos , Antígenos , Adyuvantes Inmunológicos , Péptidos
9.
J Mater Chem B ; 11(26): 6053-6059, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37310262

RESUMEN

Tumor-specific drug-delivering nanocarriers could be a promising modality for next-generation tumor therapy. Here we developed a Burkitt lymphoma-specific DNA aptamer-labeled nanocarrier using the ß-Annulus peptide, which forms a spherical nanoassembly called artificial viral capsid. Dynamic light scattering and transmission electron microscopy of the DNA aptamer-decorated artificial viral capsid showed the formation of spherical assemblies with a diameter of approximately 50-150 nm. The artificial viral capsid was selectively internalized into the Burkitt lymphoma cell line, Daudi, and doxorubicin complexed with the capsid selectively killed Daudi cells.


Asunto(s)
Aptámeros de Nucleótidos , Linfoma de Burkitt , Humanos , Cápside , Linfoma de Burkitt/tratamiento farmacológico , Péptidos , Doxorrubicina/farmacología
10.
PLoS One ; 18(6): e0286421, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37267323

RESUMEN

Studies on how exogenous molecules modulate properties of plant microtubules, such as their stability, structure, and dynamics, are important for understanding and modulating microtubule functions in plants. We have developed a Tau-derived peptide (TP) that binds to microtubules and modulates their properties by binding of TP-conjugated molecules in vitro. However, there was no investigation of TPs on microtubules in planta. Here, we generated transgenic Arabidopsis thaliana plants stably expressing TP-fused superfolder GFP (sfGFP-TP) and explored the binding properties and effects of sfGFP-TP on plant microtubules. Our results indicate that the expressed sfGFP-TP binds to the plant microtubules without inhibiting plant growth. A transgenic line strongly expressing sfGFP-TP produced thick fibrous structures that were stable under conditions where microtubules normally depolymerize. This study generates a new tool for analyzing and modulating plant microtubules.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Arabidopsis/metabolismo , Microtúbulos/metabolismo , Péptidos/farmacología
11.
Front Mol Biosci ; 10: 1137885, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065452

RESUMEN

Cytoskeletons such as microtubules and actin filaments are natural protein assemblies, which dynamically control cellular morphology by reversible polymerization/depolymerization. Recently, the control of polymerization/depolymerization of fibrous protein/peptide assemblies by external stimuli has attracted significant attention. However, as far as we know, the creation of an "artificial cytoskeleton" that reversibly controls the polymerization/depolymerization of peptide nanofiber in giant unilamellar vesicles (GUVs) has not been reported. Here, we developed peptide nanofiber self-assembled from spiropyran (SP)-modified ß-sheet-forming peptides, which can be reversibly polymerized/depolymerized by light. The reversible photoisomerization of the SP-modified peptide (FKFECSPKFE) to the merocyanine-peptide (FKFECMCKFE) by ultraviolet (UV) and visible light irradiation was confirmed by UV-visible spectroscopy. Confocal laser scanning microscopy with thioflavin T staining and transmission electron microscopy of the peptides showed that the SP-peptide formed ß-sheet nanofibers, whereas the photoisomerization to the merocyanine-peptide almost completely dissociated the nanofibers. The merocyanine peptide was encapsulated in spherical GUVs comprising of phospholipids as artificial cell models. Interestingly, the morphology of GUV encapsulating the merocyanine-peptide dramatically changed into worm-like vesicles by the photoisomerization to the SP-modified peptide, and then reversibly changed into spherical GUV by the photoisomerization to the MC-modified peptide. These dynamic morphological changes in GUVs by light can be applied as components of a molecular robot with artificially controlled cellular functions.

12.
Commun Med (Lond) ; 3(1): 56, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076593

RESUMEN

BACKGROUND: Base editing via CRISPR-Cas9 has garnered attention as a method for correcting disease-specific mutations without causing double-strand breaks, thereby avoiding large deletions and translocations in the host chromosome. However, its reliance on the protospacer adjacent motif (PAM) can limit its use. We aimed to restore a disease mutation in a patient with severe hemophilia B using base editing with SpCas9-NG, a modified Cas9 with the board PAM flexibility. METHODS: We generated induced pluripotent stem cells (iPSCs) from a patient with hemophilia B (c.947T>C; I316T) and established HEK293 cells and knock-in mice expressing the patient's F9 cDNA. We transduced the cytidine base editor (C>T), including the nickase version of Cas9 (wild-type SpCas9 or SpCas9-NG), into the HEK293 cells and knock-in mice through plasmid transfection and an adeno-associated virus vector, respectively. RESULTS: Here we demonstrate the broad PAM flexibility of SpCas9-NG near the mutation site. The base-editing approach using SpCas9-NG but not wild-type SpCas9 successfully converts C to T at the mutation in the iPSCs. Gene-corrected iPSCs differentiate into hepatocyte-like cells in vitro and express substantial levels of F9 mRNA after subrenal capsule transplantation into immunodeficient mice. Additionally, SpCas9-NG-mediated base editing corrects the mutation in both HEK293 cells and knock-in mice, thereby restoring the production of the coagulation factor. CONCLUSION: A base-editing approach utilizing the broad PAM flexibility of SpCas9-NG can provide a solution for the treatment of genetic diseases, including hemophilia B.


In patients with hemophilia B, the blood does not clot properly, leading to excessive bruising and bleeding. Hemophilia B is caused by an error in a gene called coagulation factor IX (F9). To treat patients with hemophilia B, we might be able to use a technology called CRISPR-Cas9 to edit and correct this genetic error, restoring factor IX function and improving clotting. Here, we test a specific CRISPR-Cas9 approach in cells and animals. We show that we are able to correct the genetic error in F9 in cells isolated from a patient with severe hemophilia B. We also show that we can fix the error in mice and that this increases levels of factor IX in the blood of the mice. With further testing, this gene-editing approach may be a viable therapy for patients with hemophilia B or similar genetic disorders.

13.
Chembiochem ; 24(8): e202200782, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36935355

RESUMEN

Spatiotemporal modulation of microtubules by light has become an important aspect of the biological and nanotechnological applications of microtubules. We previously developed a Tau-derived peptide as a binding unit to the inside of microtubules. Here, we conjugated the Tau-derived peptide to spiropyran, which is reversibly converted to merocyanine by light, as a reversible photocontrol system to stabilize microtubules. Among the synthesized peptides with spiropyran/merocyanine at different positions, several peptides were bound to the inside of microtubules and stabilized the structures of microtubules. The peptide with spiropyran at the N-terminus induced polymerization and stabilization of microtubules, whereas the same peptide with the merocyanine form did not exert these effects. Reversible formation of microtubules/tubulin aggregates was achieved using the peptide with spiropyran conjugated at the N-terminus and irradiation with UV and visible light. Spiropyran-conjugated Tau-derived peptides would be useful for spatiotemporal modulation of microtubule stability through reversible photocontrol of binding.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Péptidos/química , Benzopiranos/química , Proteínas tau/metabolismo
14.
Thromb Res ; 222: 131-139, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36657269

RESUMEN

[Introduction] Emicizumab, a bispecific antibody mimicking activated factor VIII (FVIII), is increasingly used in prophylaxis against bleeding in hemophilia A. Human factor-based chromogenic substrate assay (hCSA) shows concentration-dependency between emicizumab and reported FVIII activity. However, the assay measurement settings have not been optimized for emicizumab, and the reported FVIII activity cannot be directly referred as surrogate FVIII activity. [Materials and Methods] For in vitro validation of hCSA-reported surrogate FVIII activity, we compared the equation curves for emicizumab concentration with surrogate FVIII activity using spiked plasma in the thrombin generation assay (TGA), hCSA, and clot waveform analysis (CWA). Then, we generated conversion equations for hCSA-reported surrogate FVIII value to that of TGA. We also assessed the additive effect of rFVIII onto 340 nM (i.e., 50 µg/mL) emicizumab using the same assays. [Results] With 1:20 diluted plasma, halving hCSA-reported surrogate FVIII activity can be approximated to that in TGA triggered by the extrinsic pathway reagent (27.3 IU/dL vs. 13.9 IU/dL) under therapeutic emicizumab concentration. Both in TGA and hCSA, the additive effect of added FVIII on therapeutic emicizumab concentration (340 nM) was maintained at low levels of FVIII but gradually decreased at higher levels. [Conclusions] Surrogate FVIII activity can be estimated simply by halving hCSA-reported FVIII value, and the additive effect of FVIII on emicizumab diminishes at high concentrations. Based on our in vitro study, a clinical study is currently being conducted to compare individual variation of surrogate FVIII activity in hCSA and TGA.


Asunto(s)
Anticuerpos Biespecíficos , Hemofilia A , Hemostáticos , Humanos , Compuestos Cromogénicos/uso terapéutico , Factor VIII/uso terapéutico , Pruebas de Coagulación Sanguínea/métodos , Hemostáticos/uso terapéutico , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Hemofilia A/tratamiento farmacológico , Trombina/metabolismo
15.
Biophys Rev (Melville) ; 4(4): 041303, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38505425

RESUMEN

Peptides work as both functional molecules to modulate various biological phenomena and self-assembling artificial materials. The introduction of photoresponsive units to peptides allows the spatiotemporal remote control of their structure and function upon light irradiation. This article overviews the photoresponsive peptide design, interaction with biomolecules, and applications in self-assembling materials over the last 30 years. Peptides modified with photochromic (photoisomerizable) molecules, such as azobenzene and spiropyran, reversibly photo-controlled the binding to biomolecules and nanostructure formation through self-assembly. Photocleavable molecular units irreversibly control the functions of peptides through cleavage of the main chain and deprotection by light. Photocrosslinking between peptides or between peptides and other biomolecules enhances the structural stability of peptide assemblies and complexes. These photoresponsive peptides spatiotemporally controlled the formation and dissociation of peptide assemblies, gene expressions, protein-drug interactions, protein-protein interactions, liposome deformation and motility, cytoskeleton structure and stability, and cell functions by appropriate light irradiation. These molecular systems can be applied to photo-control biological functions, molecular robots, artificial cells, and next-generation smart drug delivery materials.

16.
Sci Adv ; 8(36): eabq3817, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070375

RESUMEN

Microtubules play important roles in biological functions by forming superstructures, such as doublets and branched structures, in vivo. Despite the importance, it is challenging to construct these superstructures in vitro. Here, we designed a tetrameric fluorescent protein Azami-Green (AG) fused with His-tag and Tau-derived peptide (TP), TP-AG, to generate the superstructures. Main binding sites of TP-AG can be controlled to the inside and outside of microtubules by changing the polymerization conditions. The binding of TP-AG to the inside promoted microtubule formation and generated rigid and stable microtubules. The binding of TP-AG to the outside induced various microtubule superstructures, including doublets, multiplets, branched structures, and extremely long microtubules by recruiting tubulins to microtubules. Motile microtubule aster structures were also constructed by TP-AG. The generation of various microtubule superstructures by a single type of exogenous protein is a new concept for understanding the functions of microtubules and constructing microtubule-based nanomaterials.

17.
Chem Commun (Camb) ; 58(66): 9190-9193, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35929838

RESUMEN

For light-induced stabilization of microtubules (MTs) to manipulate cells, a photo-reactive diazirine group was conjugated to a Tau-derived peptide, a motif binding on the inside of MTs. Ultraviolet (UV) light irradiation induced significant stabilization of MTs via the formation of a covalent bond of the peptide and showed toxicity.


Asunto(s)
Microtúbulos , Proteínas tau , Microtúbulos/metabolismo , Péptidos/metabolismo , Rayos Ultravioleta , Proteínas tau/metabolismo
18.
Chemistry ; 28(61): e202201848, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35880726

RESUMEN

We have synthesized B-antigen-displaying dendrimers (16-mers) with different sizes and evaluated their affinity to their IgM antibody in order to investigate which design features lead to effective multivalency. Unexpectedly, the smallest dendrimer, which cannot chelate the multiple binding sites of IgM, clearly exhibited multivalency, together with an affinity similar to or higher than those of the larger dendrimers. These results indicate that the statistical rebinding model, which involves the rapid exchange of clustered glycans, significantly contributes to the multivalency of glycodendrimers. Namely, in the design of glycodendrimers, high-density glycan presentation to enhance statistical rebinding should be considered in addition to the ability to chelate multiple binding sites. This notion stands in contrast to the currently prevailing scientific consensus, which prioritizes the chelation model. This study thus provides new and important guidelines for molecular design of glycodendrimers.


Asunto(s)
Dendrímeros , Dendrímeros/química , Polisacáridos , Sitios de Unión
19.
Chembiochem ; 23(15): e202200220, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35676201

RESUMEN

Ribonuclease S (RNase S) is an enzyme that exhibits anticancer activity by degrading RNAs within cancer cells; however, the cellular uptake efficiency is low due to its small molecular size. Here we generated RNase S-decorated artificial viral capsids with a size of 70-170 nm by self-assembly of the ß-annulus-S-peptide followed by reconstitution with S-protein at neutral pH. The RNase S-decorated artificial viral capsids are efficiently taken up by HepG2 cells and exhibit higher RNA degradation activity in cells compared with RNase S alone. Cell viability assays revealed that RNase S-decorated capsids have high anticancer activity comparable to that of standard anticancer drugs.


Asunto(s)
Cápside , Ribonucleasas , Proteínas de la Cápside/química , Péptidos/química , Ribonucleasas/farmacología
20.
J Biotechnol ; 354: 34-44, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35724765

RESUMEN

Gold nanoparticles (AuNPs) are widely used as an agent in photothermal therapy (PTT) against various cancers. However, a drug delivery system (DDS) is required for effective PTT using AuNPs as AuNPs accumulate passively in tumors. In the present study, we used polyhistidine peptide, a novel cell-penetrating peptide, which is efficiently internalized into tumor cells, as a DDS carrier for PTT using AuNPs. Polyhistidine peptide-modified AuNPs are efficiently internalized into RERF-LC-AI human lung squamous cancer cells and localized to the intracellular lysosome, which is based on the nature of the polyhistidine peptide. Furthermore, the polyhistidine peptide-modified AuNPs inhibited proliferation of RERF-LC-AI cells in a polyhistidine peptide modification-dependent manner under 660 nm laser irradiation. Quantitative real-time PCR showed increased expression levels of an apoptosis-related gene (bax) and heat stress-related gene (hsp70) in RERF-LC-AI cells treated with polyhistidine peptide-modified AuNPs and laser. Our findings highlight the efficacy of AuNPs modified with H16 peptide in PTT.


Asunto(s)
Péptidos de Penetración Celular , Histidina , Nanopartículas del Metal , Línea Celular Tumoral , Péptidos de Penetración Celular/farmacología , Oro/farmacología , Histidina/farmacología , Humanos , Nanopartículas del Metal/uso terapéutico , Fototerapia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA