Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(8): e0290851, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37651399

RESUMEN

Decalin-containing tetramic acid is a bioactive scaffold primarily produced by filamentous fungi. The structural diversity of this group of compounds is generated by characteristic enzymes of fungal biosynthetic pathways, including polyketide synthase/nonribosomal peptide synthetase hybrid enzymes and decalin synthase, which are responsible for the construction of a linear polyenoyl tetramic acid structure and stereoselective decalin formation via the intramolecular Diels-Alder reaction, respectively. Compounds that differed only in the decalin configuration were collected from genetically engineered mutants derived from decalin-containing tetramic acid-producing fungi and used for a structure-activity relationship study. Our evaluation of biological activities, such as cytotoxicity against several cancer cell lines and antibacterial, antifungal, antimalarial, and mitochondrial inhibitory activities, demonstrated that the activity for each assay varies depending on the decalin configurations. In addition to these known biological activities, we revealed that the compounds showed inhibitory activity against the insect steroidogenic glutathione S-transferase Noppera-bo. Engineering the decalin configurations would be useful not only to find derivatives with better biological activities but also to discover overlooked biological activities.


Asunto(s)
Antibacterianos , Glutatión Transferasa , Animales , Glutatión Transferasa/genética , Insectos
2.
BMC Biol ; 20(1): 43, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35172816

RESUMEN

BACKGROUND: Mosquito control is a crucial global issue for protecting the human community from mosquito-borne diseases. There is an urgent need for the development of selective and safe reagents for mosquito control. Flavonoids, a group of chemical substances with variable phenolic structures, such as daidzein, have been suggested as potential mosquito larvicides with less risk to the environment. However, the mode of mosquito larvicidal action of flavonoids has not been elucidated. RESULTS: Here, we report that several flavonoids, including daidzein, inhibit the activity of glutathione S-transferase Noppera-bo (Nobo), an enzyme used for the biosynthesis of the insect steroid hormone ecdysone, in the yellow fever mosquito Aedes aegypti. The crystal structure of the Nobo protein of Ae. aegypti (AeNobo) complexed with the flavonoids and its molecular dynamics simulation revealed that Glu113 forms a hydrogen bond with the flavonoid inhibitors. Consistent with this observation, substitution of Glu113 with Ala drastically reduced the inhibitory activity of the flavonoids against AeNobo. Among the identified flavonoid-type inhibitors, desmethylglycitein (4',6,7-trihydroxyisoflavone) exhibited the highest inhibitory activity in vitro. Moreover, the inhibitory activities of the flavonoids correlated with the larvicidal activity, as desmethylglycitein suppressed Ae. aegypti larval development more efficiently than daidzein. CONCLUSION: Our study demonstrates the mode of action of flavonoids on the Ae. aegypti Nobo protein at the atomic, enzymatic, and organismal levels.


Asunto(s)
Aedes , Animales , Flavonoides , Glutatión Transferasa/metabolismo , Humanos , Larva , Control de Mosquitos
3.
J Insect Physiol ; 134: 104294, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34389412

RESUMEN

In insects, some sterols are essential not only for cell membrane homeostasis, but for biosynthesis of the steroid hormone ecdysone. Dietary sterols are required for insect development because insects cannot synthesize sterols de novo. Therefore, sterol-like compounds that can compete with essential sterols are good candidates for insect growth regulators. In this study, we investigated the effects of the plant-derived triterpenoids, cucurbitacin B and E (CucB and CucE) on the development of the fruit fly, Drosophila melanogaster. To reduce the effects of supply with an excess of sterols contained in food, we reared D. melanogaster larvae on low sterol food (LSF) with or without cucurbitacins. Most larvae raised on LSF without supplementation or with CucE died at the second or third larval instar (L2 or L3) stages, whereas CucB-administered larvae mostly died without molting. The developmental arrest caused by CucB was partially rescued by ecdysone supplementation. Furthermore, we examined the effects of CucB on larval-prepupal transition by transferring larvae from LSF supplemented with cholesterol to that with CucB just after the L2/L3 molt. L3 larvae raised on LSF with CucB failed to pupariate, with a remarkable developmental delay. Ecdysone supplementation rescued the developmental delay but did not rescue the pupariation defect. Furthermore, we cultured the steroidogenic organ, the prothoracic gland (PG) of the silkworm Bombyx mori, with or without cucurbitacin. Ecdysone production in the PG was reduced by incubation with CucB, but not with CucE. These results suggest that CucB acts not only as an antagonist of the ecdysone receptor as previously reported, but also acts as an inhibitor of ecdysone biosynthesis.


Asunto(s)
Drosophila melanogaster , Ecdisona , Triterpenos/farmacología , Animales , Bombyx/efectos de los fármacos , Bombyx/metabolismo , Proteínas de Drosophila/efectos de los fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Ecdisona/antagonistas & inhibidores , Ecdisona/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Hormonas Juveniles/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Muda/efectos de los fármacos , Técnicas de Cultivo de Órganos , Extractos Vegetales/farmacología , Pupa/efectos de los fármacos , Pupa/crecimiento & desarrollo , Pupa/metabolismo
4.
J Pestic Sci ; 46(1): 75-87, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33746549

RESUMEN

Insect growth regulators (IGRs) can be developed by elucidating the molecular mechanisms of insect-specific biological events. Because insect molting, and metamorphosis are controlled by ecdysteroids, their biosynthetic pathways can serve as targets for IGR development. The glutathione S-transferase Noppera-bo (Nobo), which is conserved in dipteran and lepidopteran species, plays an essential role in ecdysteroid biosynthesis. Our previous study using 17ß-estradiol as a molecular probe revealed that Asp113 of Drosophila melanogaster Nobo (DmNobo) is essential for its biological function. However, to develop IGRs with a greater Nobo inhibitory activity than 17ß-estradiol, further structural information is warranted. Here, we report five novel non-steroidal DmNobo inhibitors. Analysis of crystal structures of complexes revealed that DmNobo binds these inhibitors in an Asp113-independent manner. Among amino acid residues at the substrate-recognition site, conformation of conserved Phe39 was dynamically altered upon inhibitor binding. Therefore, these inhibitors can serve as seed compounds for IGR development.

5.
J Biol Chem ; 295(20): 7154-7167, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32241910

RESUMEN

Ecdysteroids are the principal steroid hormones essential for insect development and physiology. In the last 18 years, several enzymes responsible for ecdysteroid biosynthesis encoded by Halloween genes were identified and genetically and biochemically characterized. However, the tertiary structures of these proteins have not yet been characterized. Here, we report the results of an integrated series of in silico, in vitro, and in vivo analyses of the Halloween GST protein Noppera-bo (Nobo). We determined crystal structures of Drosophila melanogaster Nobo (DmNobo) complexed with GSH and 17ß-estradiol, a DmNobo inhibitor. 17ß-Estradiol almost fully occupied the putative ligand-binding pocket and a prominent hydrogen bond formed between 17ß-estradiol and Asp-113 of DmNobo. We found that Asp-113 is essential for 17ß-estradiol-mediated inhibition of DmNobo enzymatic activity, as 17ß-estradiol did not inhibit and physically interacted less with the D113A DmNobo variant. Asp-113 is highly conserved among Nobo proteins, but not among other GSTs, implying that this residue is important for endogenous Nobo function. Indeed, a homozygous nobo allele with the D113A substitution exhibited embryonic lethality and an undifferentiated cuticle structure, a phenocopy of complete loss-of-function nobo homozygotes. These results suggest that the nobo family of GST proteins has acquired a unique amino acid residue that appears to be essential for binding an endogenous sterol substrate to regulate ecdysteroid biosynthesis. To the best of our knowledge, ours is the first study describing the structural characteristics of insect steroidogenic Halloween proteins. Our findings provide insights relevant for applied entomology to develop insecticides that specifically inhibit ecdysteroid biosynthesis.


Asunto(s)
Proteínas de Drosophila/química , Estradiol/química , Glutatión Transferasa/química , Aedes , Sustitución de Aminoácidos , Animales , Cristalografía por Rayos X , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ecdisteroides/biosíntesis , Ecdisteroides/química , Ecdisteroides/genética , Estradiol/genética , Estradiol/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Mutación con Pérdida de Función , Mutación Missense , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...