Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inflamm Res ; 15: 1873-1887, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342295

RESUMEN

Trillions of microorganisms exist in the human intestine as commensals and contribute to homeostasis through their interactions with the immune system. In this review, we use previous evidence from published papers to elucidate the involvement of commensal-specific T cells (CSTCs) in regulating intestinal inflammatory responses. CSTCs are generated centrally in the thymus or peripherally at mucosal interfaces and present as CD4+ or CD8+ T cells. Bacteria, fungi, and even viruses act commensally with humans, warranting consideration of CSTCs in this critical relationship. Dysregulation of this immunological balance can result in both intestinal inflammation or damaging autoimmune responses elsewhere in the body. Given the relative novelty of CSTCs in the literature, we aim to introduce the importance of their role in maintaining immune homeostasis at barrier sites such as the intestine.

2.
F1000Res ; 9: 217, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32399207

RESUMEN

Background: The conventional dogma of treating cancer by focusing on the elimination of tumor cells has been recently refined to include consideration of the tumor microenvironment, which includes host stromal cells. Ephrin-A1, a cell surface protein involved in adhesion and migration, has been shown to be tumor suppressive in the context of the cancer cell. However, its role in the host has not been fully investigated. Here, we examine how ephrin-A1 host deficiency affects cancer growth and metastasis in a murine model of breast cancer. Methods: 4T1 cells were orthotopically implanted into the mammary fat pads or injected into the tail veins of ephrin-A1 wild-type ( Efna1+/+), heterozygous ( Efna1+/-), or knockout ( Efna1-/-) mice. Tumor growth, lung metastasis, and tumor recurrence after surgical resection were measured. Flow cytometry and immunohistochemistry (IHC) were used to analyze various cell populations in primary tumors and tumor-bearing lungs. Results: While primary tumor growth did not differ between Efna1+/+, Efna1+/-, and Efna1-/- mice, lung metastasis and primary tumor recurrence were significantly decreased in knockout mice. Efna1-/- mice had reduced lung colonization of 4T1 cells compared to Efna1+/+ littermate controls as early as 24 hours after tail vein injection. Furthermore, established lung lesions in Efna1-/- mice had reduced proliferation compared to those in Efna1+/+ controls. Conclusions: Our studies demonstrate that host deficiency of ephrin-A1 does not impact primary tumor growth but does affect metastasis by providing a less favorable metastatic niche for cancer cell colonization and growth. Elucidating the mechanisms by which host ephrin-A1 impacts cancer relapse and metastasis may shed new light on novel therapeutic strategies.


Asunto(s)
Efrina-A1/genética , Neoplasias Pulmonares/genética , Metástasis de la Neoplasia/genética , Animales , Ratones , Ratones Noqueados , Recurrencia Local de Neoplasia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...