Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Alemán | MEDLINE | ID: mdl-38750239

RESUMEN

Health data are extremely important in today's data-driven world. Through automation, healthcare processes can be optimized, and clinical decisions can be supported. For any reuse of data, the quality, validity, and trustworthiness of data are essential, and it is the only way to guarantee that data can be reused sensibly. Specific requirements for the description and coding of reusable data are defined in the FAIR guiding principles for data stewardship. Various national research associations and infrastructure projects in the German healthcare sector have already clearly positioned themselves on the FAIR principles: both the infrastructures of the Medical Informatics Initiative and the University Medicine Network operate explicitly on the basis of the FAIR principles, as do the National Research Data Infrastructure for Personal Health Data and the German Center for Diabetes Research.To ensure that a resource complies with the FAIR principles, the degree of FAIRness should first be determined (so-called FAIR assessment), followed by the prioritization for improvement steps (so-called FAIRification). Since 2016, a set of tools and guidelines have been developed for both steps, based on the different, domain-specific interpretations of the FAIR principles.Neighboring European countries have also invested in the development of a national framework for semantic interoperability in the context of the FAIR (Findable, Accessible, Interoperable, Reusable) principles. Concepts for comprehensive data enrichment were developed to simplify data analysis, for example, in the European Health Data Space or via the Observational Health Data Sciences and Informatics network. With the support of the European Open Science Cloud, among others, structured FAIRification measures have already been taken for German health datasets.

2.
J Med Internet Res ; 25: e45013, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37639292

RESUMEN

BACKGROUND: Thorough data stewardship is a key enabler of comprehensive health research. Processes such as data collection, storage, access, sharing, and analytics require researchers to follow elaborate data management strategies properly and consistently. Studies have shown that findable, accessible, interoperable, and reusable (FAIR) data leads to improved data sharing in different scientific domains. OBJECTIVE: This scoping review identifies and discusses concepts, approaches, implementation experiences, and lessons learned in FAIR initiatives in health research data. METHODS: The Arksey and O'Malley stage-based methodological framework for scoping reviews was applied. PubMed, Web of Science, and Google Scholar were searched to access relevant publications. Articles written in English, published between 2014 and 2020, and addressing FAIR concepts or practices in the health domain were included. The 3 data sources were deduplicated using a reference management software. In total, 2 independent authors reviewed the eligibility of each article based on defined inclusion and exclusion criteria. A charting tool was used to extract information from the full-text papers. The results were reported using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. RESULTS: A total of 2.18% (34/1561) of the screened articles were included in the final review. The authors reported FAIRification approaches, which include interpolation, inclusion of comprehensive data dictionaries, repository design, semantic interoperability, ontologies, data quality, linked data, and requirement gathering for FAIRification tools. Challenges and mitigation strategies associated with FAIRification, such as high setup costs, data politics, technical and administrative issues, privacy concerns, and difficulties encountered in sharing health data despite its sensitive nature were also reported. We found various workflows, tools, and infrastructures designed by different groups worldwide to facilitate the FAIRification of health research data. We also uncovered a wide range of problems and questions that researchers are trying to address by using the different workflows, tools, and infrastructures. Although the concept of FAIR data stewardship in the health research domain is relatively new, almost all continents have been reached by at least one network trying to achieve health data FAIRness. Documented outcomes of FAIRification efforts include peer-reviewed publications, improved data sharing, facilitated data reuse, return on investment, and new treatments. Successful FAIRification of data has informed the management and prognosis of various diseases such as cancer, cardiovascular diseases, and neurological diseases. Efforts to FAIRify data on a wider variety of diseases have been ongoing since the COVID-19 pandemic. CONCLUSIONS: This work summarises projects, tools, and workflows for the FAIRification of health research data. The comprehensive review shows that implementing the FAIR concept in health data stewardship carries the promise of improved research data management and transparency in the era of big data and open research publishing. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/22505.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Humanos , Pandemias , Macrodatos , Exactitud de los Datos
3.
Stud Health Technol Inform ; 302: 390-391, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37203700

RESUMEN

Extensive workflows have been designed to FAIRify data from various domains. These tend to be cumbersome and overwhelming. This work summarises our own experiences with FAIRification in health data management and provides simple steps that can be implemented to achieve a relatively low but improved level of FAIRness. The steps lead the data steward to register the data in a repository and then annotate it with the metadata recommended by that repository. It further leads the data steward to provide the data in a machine-readable format using an established and accessible language, establish a well-defined framework to describe and structure the (meta)data as well as publish the (meta)data. We hope that following the simple roadmap described in this work helps to demystify the FAIR data principles in the health domain.


Asunto(s)
Manejo de Datos , Metadatos
5.
JMIR Res Protoc ; 10(2): e22505, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33528373

RESUMEN

BACKGROUND: Data stewardship is an essential driver of research and clinical practice. Data collection, storage, access, sharing, and analytics are dependent on the proper and consistent use of data management principles among the investigators. Since 2016, the FAIR (findable, accessible, interoperable, and reusable) guiding principles for research data management have been resonating in scientific communities. Enabling data to be findable, accessible, interoperable, and reusable is currently believed to strengthen data sharing, reduce duplicated efforts, and move toward harmonization of data from heterogeneous unconnected data silos. FAIR initiatives and implementation trends are rising in different facets of scientific domains. It is important to understand the concepts and implementation practices of the FAIR data principles as applied to human health data by studying the flourishing initiatives and implementation lessons relevant to improved health research, particularly for data sharing during the coronavirus pandemic. OBJECTIVE: This paper aims to conduct a scoping review to identify concepts, approaches, implementation experiences, and lessons learned in FAIR initiatives in the health data domain. METHODS: The Arksey and O'Malley stage-based methodological framework for scoping reviews will be used for this review. PubMed, Web of Science, and Google Scholar will be searched to access relevant primary and grey publications. Articles written in English and published from 2014 onwards with FAIR principle concepts or practices in the health domain will be included. Duplication among the 3 data sources will be removed using a reference management software. The articles will then be exported to a systematic review management software. At least two independent authors will review the eligibility of each article based on defined inclusion and exclusion criteria. A pretested charting tool will be used to extract relevant information from the full-text papers. Qualitative thematic synthesis analysis methods will be employed by coding and developing themes. Themes will be derived from the research questions and contents in the included papers. RESULTS: The results will be reported using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-analyses Extension for Scoping Reviews) reporting guidelines. We anticipate finalizing the manuscript for this work in 2021. CONCLUSIONS: We believe comprehensive information about the FAIR data principles, initiatives, implementation practices, and lessons learned in the FAIRification process in the health domain is paramount to supporting both evidence-based clinical practice and research transparency in the era of big data and open research publishing. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/22505.

6.
J Integr Bioinform ; 17(2-3)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32598315

RESUMEN

This paper presents a report on outcomes of the 10th Computational Modeling in Biology Network (COMBINE) meeting that was held in Heidelberg, Germany, in July of 2019. The annual event brings together researchers, biocurators and software engineers to present recent results and discuss future work in the area of standards for systems and synthetic biology. The COMBINE initiative coordinates the development of various community standards and formats for computational models in the life sciences. Over the past 10 years, COMBINE has brought together standard communities that have further developed and harmonized their standards for better interoperability of models and data. COMBINE 2019 was co-located with a stakeholder workshop of the European EU-STANDS4PM initiative that aims at harmonized data and model standardization for in silico models in the field of personalized medicine, as well as with the FAIRDOM PALs meeting to discuss findable, accessible, interoperable and reusable (FAIR) data sharing. This report briefly describes the work discussed in invited and contributed talks as well as during breakout sessions. It also highlights recent advancements in data, model, and annotation standardization efforts. Finally, this report concludes with some challenges and opportunities that this community will face during the next 10 years.


Asunto(s)
Biología Computacional , Biología Sintética , Alemania , Estándares de Referencia , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...