Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768549

RESUMEN

The effect of mycotoxin patulin (4-hydroxy-4H-furo [3,2c] pyran-2 [6H] -one) on the mitochondrial carnitine/acylcarnitine carrier (CAC, SLC25A20) was investigated. Transport function was measured as [3H]-carnitineex/carnitinein antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in E. coli. Patulin (PAT) inhibited both the mitochondrial native and recombinant transporters. The inhibition was not reversed by physiological and sulfhydryl-reducing reagents, such as glutathione (GSH) or dithioerythritol (DTE). The IC50 derived from the dose-response analysis indicated that PAT inhibition was in the range of 50 µM both on the native and on rat and human recombinant protein. The kinetics process revealed a competitive type of inhibition. A substrate protection experiment confirmed that the interaction of PAT with the protein occurred within a protein region, including the substrate-binding area. The mechanism of inhibition was identified using the site-directed mutagenesis of CAC. No inhibition was observed on Cys mutants in which only the C136 residue was mutated. Mass spectrometry studies and in silico molecular modeling analysis corroborated the outcomes derived from the biochemical assays.


Asunto(s)
Patulina , Humanos , Animales , Ratas , Escherichia coli/metabolismo , Cisteína/metabolismo , Reactivos de Sulfhidrilo/farmacología , Carnitina/farmacología , Carnitina/metabolismo , Glutatión/metabolismo , Proteínas de Transporte de Membrana
2.
Int J Biol Macromol ; 221: 1453-1465, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36122779

RESUMEN

Mitochondrial carnitine/acylcarnitine carrier (CAC) is a member of the mitochondrial carrier (MC) family and imports acylcarnitine into the mitochondrial matrix in exchange for carnitine, playing a pivotal role in carnitine shuttle, crucial for fatty acid oxidation. The crystallized structure of CAC has not been solved yet, however, the availability of several in vitro/in silico studies, also based on the crystallized structures of the ADP/ATP carrier in the cytosolic-conformation and in the matrix-conformation, has made possible to confirm the hypothesis of the single-binding centered-gated pore mechanism for all the members of the MC family. In addition, our recent bioinformatics analyses allowed quantifying in silico the importance of protein residues of MC substrate binding region, of those involved in the formation of the matrix and cytosolic gates, and of those belonging to the Pro/Gly (PG) levels, proposed to be crucial for the tilting/kinking/bending of the six MC transmembrane helices, funneling the substrate translocation pathway. Here we present a combined in silico/in vitro analysis employed for investigating the role played by a group of 6 proline residues and 6 glycine residues, highly conserved in CAC, belonging to MC PG-levels. Residues of the PG-levels surround the similarly located MC common substrate binding region, and were proposed to lead conformational changes and substrate translocation, following substrate binding. For our analysis, we employed 3D molecular modeling approaches, alanine scanning site-directed mutagenesis and in vitro transport assays. Our analysis reveals that P130 (H3), G268 (H6) and G220 (H5), mutated in alanine, affect severely CAC transport activity (mutant catalytic efficiency lower than 5 % compared to the wild type CAC), most likely due to their major role in triggering CAC conformational changes, following carnitine binding. Notably, P30A (H1) and G121A (H3) CAC mutants, increase the carnitine uptake up to 217 % and 112 %, respectively, compared to the wild type CAC.


Asunto(s)
Carnitina Aciltransferasas , Prolina , Carnitina Aciltransferasas/genética , Carnitina Aciltransferasas/química , Carnitina Aciltransferasas/metabolismo , Glicina , Carnitina , Alanina
3.
Free Radic Biol Med ; 188: 395-403, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35792242

RESUMEN

Both toxic and physiological effects of CO are mostly caused by well described interactions with heme-groups of proteins. Interactions of CO with non-heme proteins have also been unveiled. Besides interaction of CO with mitochondrial heme containing respiratory complexes, a BK channel and the phosphate carrier which do not contain metal cofactors, have been identified as CO targets. However, the molecular mechanisms of interaction with non-metal-containing proteins are not understood. We show in this work the effect of CO on the mitochondrial carnitine carrier (SLC25A20) using CORM-3, a widely recognized CO releasing compound. CO exerts an inhibitory effect at the micromolar concentration on the transport function of the transporter extracted from treated mitochondria. The effect is due to a single Cys residue, C136 as revealed by mass spectrometry analysis. A computational approach predicted the need for vicinal Asp and Lys residues for the C136 carbonylation to occur. These data demonstrate a novel mechanism of interaction of CO with a protein not containing metal atoms and will enable the prediction of CO targets.


Asunto(s)
Monóxido de Carbono , Compuestos Organometálicos , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacología , Carnitina/análogos & derivados , Carnitina/metabolismo , Hemo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Compuestos Organometálicos/farmacología
4.
Biochim Biophys Acta Bioenerg ; 1863(5): 148557, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35367451

RESUMEN

We herein report the identification of the lantanide praseodymium trivalent ion Pr3+ as inhibitor of mitochondrial transporters for basic amino acids and phylogenetically related carriers belonging to the Slc25 family. The inhibitory effect of Pr3+ has been tested using mitochondrial transporters reconstituted into liposomes being effective in the micromolar range, acting as a competitive inhibitor of the human basic amino acids carrier (BAC, Slc25A29), the human carnitine/acylcarnitine carrier (CAC, Slc25A20). Furthermore, we provide computational evidence that the complete inhibition of the transport activity of the recombinant proteins is due to the Pr3+ coordination to key acidic residues of the matrix salt bridge network. Besides being used as a first choice stop inhibitor for functional studies in vitro of mitochondrial carriers reconstituted in proteoliposomes, Pr3+ might also represent a useful tool for structural studies of the mitochondrial carrier family.


Asunto(s)
Carnitina Aciltransferasas , Praseodimio , Aminoácidos Básicos , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina Aciltransferasas/química , Humanos , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas Mitocondriales/metabolismo
5.
Chem Biol Interact ; 307: 179-185, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31063765

RESUMEN

The effect of polyphenols, recognized as the principal antioxidant and beneficial molecules introduced with the diet, extracted from sweet cherry (Prunus avium L.) on the recombinant human mitochondrial carnitine/acylcarnitine transporter (CACT) has been studied in proteoliposomes. CACT transport activity, which was strongly impaired after oxidation by atmospheric O2 or H2O2, due to the formation of a disulfide bridge between cysteines 136 and 155, was restored by externally added polyphenols. CACT reduction by polyphenols was time dependent. Spectroscopic analysis of polyphenolic extracts revealed eight most represented compounds in four cultivars. Molecular docking of CACT structural omology model with the most either abundant and arguably bio-available phenolic compound (trans 3-O-feruloyl-quinic acid) of the mix, is in agreement with the experimental data since it results located in the active site close to cysteine 136 at the bottom of the translocation aqueous cavity.


Asunto(s)
Carnitina Aciltransferasas/metabolismo , Mitocondrias/metabolismo , Polifenoles/metabolismo , Prunus avium/química , Sitios de Unión , Carnitina Aciltransferasas/química , Carnitina Aciltransferasas/genética , Humanos , Peróxido de Hidrógeno/química , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Polifenoles/análisis , Estructura Terciaria de Proteína , Prunus avium/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...