Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275757

RESUMEN

Questions about which reactive oxygen species (ROS) or reactive nitrogen species (RNS) can escape from the mitochondria and activate signals must be addressed. In this study, two parameters, the calculated dipole moment (debye, D) and permeability coefficient (Pm) (cm s-1), are listed for hydrogen peroxide (H2O2), hydroxyl radical (•OH), superoxide (O2•-), hydroperoxyl radical (HO2•), nitric oxide (•NO), nitrogen dioxide (•NO2), peroxynitrite (ONOO-), and peroxynitrous acid (ONOOH) in comparison to those for water (H2O). O2•- is generated from the mitochondrial electron transport chain (ETC), and several other ROS and RNS can be generated subsequently. The candidates which pass through the mitochondrial membrane include ROS with a small number of dipoles, i.e., H2O2, HO2•, ONOOH, •OH, and •NO. The results show that the dipole moment of •NO2 is 0.35 D, indicating permeability; however, •NO2 can be eliminated quickly. The dipole moments of •OH (1.67 D) and ONOOH (1.77 D) indicate that they might be permeable. This study also suggests that the mitochondria play a central role in protecting against further oxidative stress in cells. The amounts, the long half-life, the diffusion distance, the Pm, the one-electron reduction potential, the pKa, and the rate constants for the reaction with ascorbate and glutathione are listed for various ROS/RNS, •OH, singlet oxygen (1O2), H2O2, O2•-, HO2•, •NO, •NO2, ONOO-, and ONOOH, and compared with those for H2O and oxygen (O2). Molecules with negative electrical charges cannot directly diffuse through the phospholipid bilayer of the mitochondrial membranes. Short-lived molecules, such as •OH, would be difficult to contribute to intracellular signaling. Finally, HO2• and ONOOH were selected as candidates for the ROS/RNS that pass through the mitochondrial membrane.


Asunto(s)
Peróxido de Hidrógeno , Dióxido de Nitrógeno , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno/farmacología , Citosol , Estrés Oxidativo , Óxido Nítrico , Ácido Peroxinitroso , Oxígeno , Mitocondrias
2.
Radiat Res ; 201(2): 115-125, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211765

RESUMEN

The effects of long-term low-dose X-ray irradiation on the outer root sheath (ORS) cells of C3H/He mice were investigated. Mice were irradiated with a regime of 100 mGy/day, 5 days/week, for 12 weeks (Group X) and the results obtained were compared to those in a non-irradiated control (Group C). Potential protection against ORS cells damage induced by this exposure was investigated by adding the stable nitroxide radical 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) at 1 mM to the drinking water of mice (Group X + TEMPOL). The results obtained were compared with Group C and a non-irradiated group treated with TEMPOL (Group C + TEMPOL). After fractionated X-ray irradiation, skin was removed and ORS cells were examined by hematoxylin and eosin staining and electron microscopy for an abnormal nuclear morphology and nuclear condensation changes. Fractionated X-irradiated mice had an increased number of ORS cells with an abnormal nuclear morphology as well as nuclear condensation changes. Sections were also immunohistochemically examined for the presence of TdT-mediated dUTP nick-end labeling (TUNEL), 8-hydroxy-2'-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE), vascular endothelial growth factor (VEGF), nitrotyrosine, heme oxygenase 1 (HO-1), and protein gene product 9.5 (PGP 9.5). Significant increases were observed in TUNEL, 8-OHdG, and 4-HNE levels in ORS cells from mice in Group X. Electron microscopy also showed irregular shrunken ORS cells in Group X. These changes were prevented by the presence of TEMPOL in the drinking water of the irradiated mice. TEMPOL alone had no significant effects. These results suggest that fractionated doses of radiation induced oxidative damage in ORS cells; however, TEMPOL provided protection against this damage, possibly as a result of the rapid reaction of this nitroxide radical with the reactive oxidants generated by fractionated X-ray irradiation.


Asunto(s)
Agua Potable , Óxidos de Nitrógeno , Marcadores de Spin , Animales , Ratones , Rayos X , Folículo Piloso , Factor A de Crecimiento Endotelial Vascular , Ratones Endogámicos C3H , Óxidos N-Cíclicos/farmacología , Óxidos N-Cíclicos/uso terapéutico
3.
Mitochondrion ; 73: 84-94, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37956777

RESUMEN

The sleeping chironomid (Polypedilum vanderplanki) is the only insect capable of surviving complete desiccation in an ametabolic state called anhydrobiosis. Here, we focused on the role of oxidative stress and we observed the production of reactive oxygen species (ROS) in desiccating larvae and in those exposed to salinity stress. Oxidative stress occurs to some extent in desiccating larvae, inducing carbonylation of proteins. Oxidative stress overcomes the antioxidant defenses of the larvae during the first hour following rehydration of anhydrobiotic larvae. It facilitates the oxidation of DNA and cell membrane lipids; however, these damages are quickly repaired after a few hours. In addition to its deleterious effects, we demonstrated that artificial exposure to oxidative stress could induce a response similar to desiccation stress, at the transcriptome and protein levels. Furthermore, the response of anhydrobiosis-related genes to desiccation and salinity stress was inhibited by antioxidant treatment. Thus, we conclude that oxidative stress is an essential trigger for inducing the expression of protective genes during the onset of anhydrobiosis in desiccating of P. vanderplanki larvae.


Asunto(s)
Chironomidae , Animales , Chironomidae/genética , Chironomidae/metabolismo , Desecación , Antioxidantes/metabolismo , Estrés Oxidativo , Larva/genética , Larva/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-37353468

RESUMEN

OBJECTIVE: We investigated the efficacy of using texture analysis of ultrasonographic images of the cervical lymph nodes of patients with squamous cell carcinoma of the tongue to differentiate between metastatic and non-metastatic lymph nodes. STUDY DESIGN: We analyzed 32 metastatic and 28 non-metastatic lymph nodes diagnosed by histopathologic examination on presurgical US images. Using the LIFEx texture analysis program, we extracted 36 texture features from the images and calculated the statistical significance of differences in texture features between metastatic and non-metastatic lymph nodes using the t test. To assess the diagnostic ability of the significantly different texture features to discriminate between metastatic and non-metastatic nodes, we performed receiver operating characteristic curve analysis and calculated the area under the curve. We set the cutoff points that maximized the sensitivity and specificity for each curve according to the Youden J statistic. RESULTS: We found that 20 texture features significantly differed between metastatic and non-metastatic lymph nodes. Among them, only the gray-level run length matrix feature of run length non-uniformity and the gray-level zone length matrix features of gray-level non-uniformity and zone length non-uniformity showed an excellent ability to discriminate between metastatic and non-metastatic lymph nodes as indicated by the area under the curve and the sum of sensitivity and specificity. CONCLUSIONS: Analysis of the texture features of run length non-uniformity, gray-level non-uniformity, and zone length non-uniformity values allows for differentiation between metastatic and non-metastatic lymph nodes, with the use of gray-level non-uniformity appearing to be the best means of predicting metastatic lymph nodes.


Asunto(s)
Carcinoma de Células Escamosas , Humanos , Carcinoma de Células Escamosas/patología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Cuello/diagnóstico por imagen , Diferenciación Celular , Lengua , Estudios Retrospectivos
5.
Biomolecules ; 13(3)2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36979380

RESUMEN

It has been known that reactive oxygen species (ROS) are generated from the mitochondrial electron transport chain (ETC). Majima et al. proved that mitochondrial ROS (mtROS) caused apoptosis for the first time in 1998 (Majima et al. J Biol Chem, 1998). It is speculated that mtROS can move out of the mitochondria and initiate cellular signals in the nucleus. This paper aims to prove this phenomenon by assessing the change in the amount of manganese superoxide dismutase (MnSOD) by MnSOD transfection. Two cell lines of the same genetic background, of which generation of mtROS are different, i.e., the mtROS are more produced in RGK1, than in that of RGM1, were compared to analyze the cellular signals. The results of immunocytochemistry staining showed increase of Nrf2, Keap1, HO-1 and 2, MnSOD, GCL, GST, NQO1, GATA1, GATA3, GATA4, and GATA5 in RGK1 compared to those in RGM1. Transfection of human MnSOD in RGK1 cells showed a decrease of those signal proteins, suggesting mtROS play a role in cellular signals in nucleus.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Transducción de Señal , Humanos , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Apoptosis
6.
Mitochondrion ; 70: 1-7, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36841519

RESUMEN

We designed a method to examine the mutation frequencies of the A3243G mutation of mitochondrial DNA (mtDNA) in patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. We performed a qPCR assay using the FAM and VIC TaqMan probes, which detect the 3243G (mutated) and 3243A (wild-type) sequences of mtDNA, respectively. The results obtained by "degree" in a series of differential mutation frequencies were used to plot a standard curve of the mutation frequency. The standard curve was then applied for qPCR assays of the desired samples. The standard deviation (%) of the samples calculated using the standard curve for the TaqMan probe was 2.4 ± 1.5%. This method could be used to examine mutation frequencies in the context of diabetes, aging, cancer, and neurodegenerative diseases.


Asunto(s)
Síndrome MELAS , Accidente Cerebrovascular , Humanos , Tasa de Mutación , Síndrome MELAS/genética , Mutación , ADN Mitocondrial/genética
7.
Front Immunol ; 14: 1275001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38187378

RESUMEN

Significance: This review discusses the coronavirus disease 2019 (COVID-19) pathophysiology in the context of diabetes and intracellular reactions by COVID-19, including mitochondrial oxidative stress storms, mitochondrial ROS storms, and long COVID. Recent advances: The long COVID is suffered in ~10% of the COVID-19 patients. Even the virus does not exist, the patients suffer the long COVID for even over a year, This disease could be a mitochondria dysregulation disease. Critical issues: Patients who recover from COVID-19 can develop new or persistent symptoms of multi-organ complications lasting weeks or months, called long COVID. The underlying mechanisms involved in the long COVID is still unclear. Once the symptoms of long COVID persist, they cause significant damage, leading to numerous, persistent symptoms. Future directions: A comprehensive map of the stages and pathogenetic mechanisms related to long COVID and effective drugs to treat and prevent it are required, which will aid the development of future long COVID treatments and symptom relief.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Especies Reactivas de Oxígeno , Mitocondrias , Estrés Oxidativo
9.
Leg Med (Tokyo) ; 54: 101969, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34656421

RESUMEN

Fetal age is estimated widely by body length and weight and skeletal or dental development and maturation. Regarding dental development, dental development charts reported by Schour and Massler and Ubelaker are well known. We tried to calculate the calcification rate of the deciduous teeth, mandibular cortical bone, and clavicle in fetuses utilizing postmortem computed tomography (CT) image analysis. The CT values within the circumferential area of the region of interest were automatically calculated using a software, and the calcification rate was calculated by performing single regression analysis. Our results showed that deciduous tooth calcification could be detected in over 19-week-old fetuses using CT images. The calcification of bones (mandibular cortical bone and clavicle) started earlier than the calcification of deciduous teeth. However, the calcification rate of the bones was slower compared to that of the deciduous teeth. The calcification rate of the deciduous teeth in fetuses using CT value may be effective to estimate fetal age and evaluate deciduous teeth development, suggesting that our established method is effective for age estimation in forensic dentistry.


Asunto(s)
Determinación de la Edad por los Dientes , Feto/diagnóstico por imagen , Humanos , Mandíbula , Tomografía Computarizada por Rayos X , Diente Primario
10.
Arch Biochem Biophys ; 703: 108853, 2021 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-33811847

RESUMEN

Generation of mitochondrial reactive oxygen species (ROS), lipid peroxidation, 4-hydroxy-2-nonenal, and heat-shock protein (HSP) 47 after electron and X-ray irradiations were detected in the human neuroblastoma cell line SK-N-SH. After 10 Gy electron irradiation and 15 Gy X-ray irradiation, mitochondrial ROS production and lipid peroxidation were significantly increased. Additionally, we observed a significant increase in the levels of HSP47 after 3 and 10 Gy electron irradiation as well as 15 Gy X-ray irradiation. Furthermore, myristoylation and farnesylation were increased after 10 Gy electron and 15 Gy X-ray irradiations. We found that the level of HSP47 increased in the mitochondria after 10 Gy electron and 15 Gy X-ray irradiations. HSP47 coexisted with myristoylation and farnesylation. Furthermore, HSP47 overexpression increased mitochondrial ROS production. These results suggest that HSP47 plays an important role in mitochondria and induces mitochondrial ROS production in SK-N-SH cells.


Asunto(s)
Electrones , Proteínas del Choque Térmico HSP47/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Neuroblastoma/patología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Humanos , Procesamiento Proteico-Postraduccional/efectos de la radiación , Transporte de Proteínas/efectos de la radiación , Rayos X
11.
J Clin Biochem Nutr ; 67(2): 174-178, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33041515

RESUMEN

To clarify a possible index for long-term and low-dose irradiation, the effects of repeated low-dose X-ray irradiation on the amount of melanin-derived radicals in mouse hair and tail skin were investigated. Eight-week-old female C3H/HeSlc mice were irradiated by X-rays at a dose of 100 mGy/day 5 days/week for 12 weeks. Similarly, a 4-week irradiation experiment was carried out at 500 mGy/day for C3H/HeSlc mice, or at 10, 100, and 500 mGy/day for 8-week-old female C57BL/6NCrSlc mice. The hair sample (~10 mg) was weighed accurately and stuffed into a plastic tube. The 2-cm tip of the tail was sampled and lyophilized. Melanin-derived radicals in hair and tail samples were measured by X-band electron paramagnetic resonance spectrometry. After X-ray irradiation at 100 mGy/day for 12 weeks, no difference was found in the amount of melanin-derived radicals in the hair of the irradiated and non-irradiated groups. X-ray irradiation at 500 mGy/day for 4 weeks increased the amount of melanin-derived radicals in hair compared with the non-irradiated group, but the baseline amount of melanin-derived radicals in hair was varied. The amount of melanin-derived radicals in the tail skin dose-dependently increased. Melanin-derived radicals in skin may be an endogenous marker for long-term and low-dose irradiation.

12.
13.
J Radiat Res ; 61(2): 237-242, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-31904079

RESUMEN

The aim of this study was to determine whether membrane lipid peroxidation in mammalian cells is enhanced by X-ray irradiation at the K-shell resonance absorption peak of phosphorus. A549 and wild-type p53-transfected H1299 (H1299/wtp53) cell lines derived from human lung carcinoma were irradiated with monoenergetic X-rays at 2.153 keV, the phosphorus K-shell resonance absorption peak, or those at 2.147 or 2.160 keV, which are off peaks. Immunofluorescence staining for 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product, was used as marker for protein modification. In both cell lines, the HNE production was significantly enhanced after irradiation at 2.153 keV compared to sham-irradiation. The enhancement (E) was calculated as the ratio of the fluorescence intensity of irradiated cells to that of sham-irradiated cells. In both the cell lines, E2.153 was significantly larger than E2.147 and no significant difference between E2.147 and E2.160 was observed. The extra enhancement at 2.153 keV was possibly caused by energy transition within the phosphorus K-shell resonance absorption. Our results indicate that membrane lipid peroxidation in cells is enhanced by the Auger effect after irradiation at the K-shell resonance absorption peak of phosphorus rather than by the photoelectric effect of the constituent atoms in the membrane lipid at 2.147 keV.


Asunto(s)
Membrana Celular/metabolismo , Peroxidación de Lípido , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Fósforo/química , Aldehídos/química , Línea Celular Tumoral , Fluorescencia , Humanos , Dosis de Radiación , Rayos X
14.
J Clin Biochem Nutr ; 65(2): 83-90, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31592061

RESUMEN

5-Aminolevulinic acid, a precursor of heme, is utilized in a variety of applications including cancer treatment, surgery, and plant nutrition. However, 5-aminolevulinic acid itself induces oxidative stress and subsequent lipid peroxidation. Reactive oxygen species are factors in oxidative stress, not only causing cellular injury but also inducing several signal transduction pathways. Especially in cancer cells, a significant amount of signalling activation and subsequent activation of protein is caused by the enhancement of reactive oxygen species production. Reactive oxygen species levels in normal cells are low and an oxidative condition is harmful; hence, administration of 5-aminolevulinic acid to normal cells may induce oxidative stress, resulting in cell death. In this study, we investigated the effect of 5-aminolevulinic acid on normal and cancer cells with regard to oxidative stress. We used the rat normal gastric cell line RGM and its cancer-like mutant cell line RGK. 5-Aminolevulinic acid treatment of RGM cells enhanced reactive oxygen species generation and induced apoptosis associated with p53, whereas RGK cells were unaffected. In addition, RGM cell viability was recovered by application of N-acetyl-l-cysteine or p53 inhibitor. These results suggest that 5-aminolevulinic acid causes oxidative stress in normal gastric cells and induces apoptosis via the p53-dependent pathway.

15.
Oral Radiol ; 34(2): 89-104, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-30484133

RESUMEN

Dental cone-beam computed tomography (CBCT) received regulatory approval in Japan in 2000 and has been widely used since being approved for coverage by the National Health Insurance system in 2012. This imaging technique allows dental practitioners to observe and diagnose lesions in the dental hard tissue in three dimensions (3D). When performing routine radiography, the examination must be justified, and optimal protection should be provided according to the ALARA (as low as reasonably achievable) principles laid down by the International Commission on Radiological Protection. Dental CBCT should be performed in such a way that the radiation exposure is minimized and the benefits to the patient are maximized. There is a growing demand for widespread access to cutting-edge health care through Japan's universal health insurance system. However, at the same time, people want our limited human, material, and financial resources to be used efficiently while providing safe health care at the least possible cost to society. Japan's aging population is expected to reach a peak in 2025, when most of the baby boomer generation will be aged 75 years or older. Comprehensive health care networks are needed to overcome these challenges. Against this background, we hope that this text will contribute to the nation's oral health by encouraging efficient use of dental CBCT.


Asunto(s)
Tomografía Computarizada de Haz Cónico/normas , Guías de Práctica Clínica como Asunto , Radiografía Dental/normas , Humanos , Japón
16.
J Clin Biochem Nutr ; 61(3): 183-188, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29203959

RESUMEN

Iron is an essential nutrient for life and is involved in many important processes such as oxygen transport and DNA synthesis. However, excess amounts of iron can cause carcinogenesis by producing reactive oxygen species. Thus, the cellular transport of iron must be tightly regulated. In the human body, iron may be present as heme or non-heme iron. The mechanisms governing the cellular transport of these forms have not been clearly elucidated. We previously reported that the expression of an important heme transporter, heme carrier protein 1 was regulated by cancer-specific reactive oxygen species derived from mitochondria. In this study, we have asked if mitochondrial reactive oxygen species may also be related with non-heme iron transport. In order to address this question, we have investigated the relationship between mitochondrial reactive oxygen species and accumulation of cellular non-heme iron in a rat gastric normal, cancer and manganese superoxide dismutase-overexpressing cancer cell line, in which reactive oxygen species from mitochondria are specifically scavenged. We have also analyzed the expression of divalent metal transporter 1 and ferroprotin, involved in the incorporation and excretion of non-heme iron, respectively, as well as a hypoxia-related transcription factor HIF-1α, to elucidate the molecular mechanism of non-heme iron accumulation.

17.
Handb Exp Pharmacol ; 240: 439-456, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28176043

RESUMEN

Mitochondria are a major source of intracellular energy and reactive oxygen species in cells, but are also increasingly being recognized as a controller of cell death. Here, we review evidence of signal transduction control by mitochondrial superoxide generation via the nuclear factor-κB (NF-κB) and GATA signaling pathways. We have also reviewed the effects of ROS on the activation of MMP and HIF. There is significant evidence to support the hypothesis that mitochondrial superoxide can initiate signaling pathways following transport into the cytosol. In this study, we provide evidence of TATA signal transductions by mitochondrial superoxide. Oxidative phosphorylation via the electron transfer chain, glycolysis, and generation of superoxide from mitochondria could be important factors in regulating signal transduction, cellular homeostasis, and cell death.


Asunto(s)
Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , FN-kappa B/fisiología
18.
Sci Rep ; 6: 39015, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27982062

RESUMEN

The effects of long-term exposure to extreme space conditions on astronauts were investigated by analyzing hair samples from ten astronauts who had spent six months on the International Space Station (ISS). Two samples were collected before, during and after their stays in the ISS; hereafter, referred to as Preflight, Inflight and Postflight, respectively. The ratios of mitochondrial (mt) to nuclear (n) DNA and mtRNA to nRNA were analyzed via quantitative PCR. The combined data of Preflight, Inflight and Postflight show a significant reduction in the mtDNA/nDNA in Inflight, and significant reductions in the mtRNA/nRNA ratios in both the Inflight and Postflight samples. The mtRNA/mtDNA ratios were relatively constant, except in the Postflight samples. Using the same samples, the expression of redox and signal transduction related genes, MnSOD, CuZnSOD, Nrf2, Keap1, GPx4 and Catalase was also examined. The results of the combined data from Preflight, Inflight and Postflight show a significant decrease in the expression of all of the redox-related genes in the samples collected Postflight, with the exception of Catalase, which show no change. This decreased expression may contribute to increased oxidative stress Inflight resulting in the mitochondrial damage that is apparent Postflight.


Asunto(s)
Astronautas , ADN Mitocondrial , Regulación de la Expresión Génica , Homeostasis , Mitocondrias , ARN , Vuelo Espacial , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , ARN/genética , ARN/metabolismo , ARN Mitocondrial , Factores de Tiempo
19.
J Clin Biochem Nutr ; 58(3): 180-5, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27257342

RESUMEN

Photodynamic therapy is useful for the treatment of cancer because it is minimally invasive for patients. Certain porphyrin compounds and their derivatives have been used as the photosensitizer because they accumulate specifically in cancerous tissues. However, the detailed mechanism of this phenomenon has not been clarified. We previously reported that a proton-coupled folate transporter, HCP1, transported porphyrins and that regulation of the protein was associated with cancer-specific reactive oxygen species from mitochondria (mitROS). Therefore, over-generation of mitROS could increase HCP1 expression and the effect of photodynamic therapy. We investigated whether pretreatment with indomethacin influenced photodynamic therapy by using a rat normal gastric mucosal cell line, RGM1, its cancer-like mutated cell line, RGK1, and a manganese superoxide dismutase (MnSOD)-overexpressing RGK cell line, RGK-MnSOD. Indomethacin promotes the generation of cellular mitROS by inhibiting the electron transport chain, and MnSOD scavenges the mitROS. We elucidated that indomethacin enhanced cancer-specific mitROS generation and increased HCP1 expression. Furthermore, RGK1 cells showed higher cellular incorporation of hematoporphyrin and better therapeutic effect with indomethacin treatment whereas RGK-MnSOD cells did not show a difference. Thus, we concluded that indomethacin improved the effect of photodynamic therapy by inducing increased mitROS generation in cancer cells.

20.
JAMA Neurol ; 73(8): 990-3, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27323007

RESUMEN

IMPORTANCE: The regulatory factors explaining the wide spectrum of clinical phenotypes for mitochondrial 3243A>G mutation are not known. Crosstalk between nuclear genes and mitochondrial DNA might be one factor. OBSERVATIONS: In this case series, we compared 2 pairs of male twins with the mitochondrial 3243 A>G mutation and mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes syndrome with a female control patient. One pair of monozygotic twins presented with diabetes and deafness in their 30s, stroke-like episodes in their 40s, and cardiac events and death in their 50s. Another pair of twins presented with deafness and stroke-like episodes in their 20s. The degree of heteroplasmy of 3243A>G mutation in the various tissues and organs was similar in the first pair of twins compared with the control patient. CONCLUSIONS AND RELEVANCE: The clinical phenotype and segregation of mitochondrial 3243A>G mutation was similar in monozygotic twins. The onset age and distribution of the symptoms might be regulated by nuclear genes. Our findings might help to predict the clinical course of the surviving twins and afford an opportunity for therapy before the onset of mitochondrial disease, especially for monozygotic twins caused by nuclear transfer with a small amount of nuclear-donor mitochondrial DNA.


Asunto(s)
ADN Mitocondrial/genética , Síndrome MELAS/genética , Enfermedades Mitocondriales/genética , Mutación/genética , Gemelos Monocigóticos/genética , Adulto , Anciano , Humanos , Masculino , Persona de Mediana Edad , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...