Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Chem ; 16(7): 1210, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38977872
2.
ACS Appl Mater Interfaces ; 16(25): 32118-32127, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38862123

RESUMEN

The SARS-CoV-2 (COVID-19) pandemic outbreak led to enormous social and economic repercussions worldwide, felt even to this date, making the design of new therapies to combat fast-spreading viruses an imperative task. In the face of this, diverse cutting-edge nanotechnologies have risen as promising tools to treat infectious diseases such as COVID-19, as well as challenging illnesses such as cancer and diabetes. Aside from these applications, nanoscale metal-organic frameworks (nanoMOFs) have attracted much attention as novel efficient drug delivery systems for diverse pathologies. However, their potential as anti-COVID-19 therapeutic agents has not been investigated. Herein, we propose a pioneering anti-COVID MOF approach by studying their potential as safe and intrinsically antiviral agents through screening various nanoMOF. The iron(III)-trimesate MIL-100 showed a noteworthy antiviral effect against SARS-CoV-2 at the micromolar range, ensuring a high biocompatibility profile (90% of viability) in a real infected human cellular scenario. This research effectively paves the way toward novel antiviral therapies based on nanoMOFs, not only against SARS-CoV-2 but also against other challenging infectious and/or pulmonary diseases.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Estructuras Metalorgánicas , SARS-CoV-2 , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Humanos , SARS-CoV-2/efectos de los fármacos , Antivirales/química , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/virología , Chlorocebus aethiops , Células Vero , Supervivencia Celular/efectos de los fármacos
3.
Sci Rep ; 14(1): 7882, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570568

RESUMEN

Pharmaceutical active compounds (PhACs) are some of the most recalcitrant water pollutants causing undesired environmental and human effects. In absence of adapted decontamination technologies, there is an urgent need to develop efficient and sustainable alternatives for water remediation. Metal-organic frameworks (MOFs) have recently emerged as promising candidates for adsorbing contaminants as well as providing photoactive sites, as they possess exceptional porosity and chemical versatility. To date, the reported studies using MOFs in water remediation have been mainly focused on the removal of a single type of PhACs and rarely on the combined elimination of PhACs mixtures. Herein, the eco-friendly bismuth-based MOF, SU-101, has been originally proposed as an efficient adsorbent-photocatalyst for the elimination of a mixture of three challenging persistent PhACs, frequently detected in wastewater and surface water in ng L-1 to mg·L-1 concentrations: the antibiotic sulfamethazine (SMT), the anti-inflammatory diclofenac (DCF), and the antihypertensive atenolol (At). Adsorption experiments of the mixture revealed that SU-101 exhibited a great adsorption capacity towards At, resulting in an almost complete removal (94.1 ± 0.8% for combined adsorption) in only 5 h. Also, SU-101 demonstrated a remarkable photocatalytic activity under visible light to simultaneously degrade DCF and SMT (99.6 ± 0.4% and 89.2 ± 1.4%, respectively). In addition, MOF-contaminant interactions, the photocatalytic mechanism and degradation pathways were investigated, also assessing the toxicity of the resulting degradation products. Even further, recycling and regeneration studies were performed, demonstrating its efficient reuse for 4 consecutive cycles without further treatment, and its subsequent successful regeneration by simply washing the material with a NaCl solution.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Humanos , Adsorción , Contaminantes Químicos del Agua/análisis , Aguas Residuales , Atenolol , Estructuras Metalorgánicas/química , Diclofenaco , Agua , Preparaciones Farmacéuticas
4.
Front Chem ; 12: 1376948, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487782

RESUMEN

The transition-metal free S-vinylation of thiophenols by vinylbenziodoxolones (VBX) constituted an important step forward in hypervalent iodine-mediated vinylations, highlighting the difference to vinyliodonium salts and that the reaction outcome was influenced by the substitution pattern of the benziodoxolone core. In this study, we report several new classes of hypervalent iodine vinylation reagents; vinylbenziodazolones, vinylbenziodoxolonimine and vinyliodoxathiole dioxides. Their synthesis, structural and electronic properties are described and correlated to the S-vinylation outcome, shedding light on some interesting facets of these reagents.

5.
Inorg Chem ; 62(51): 20929-20939, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38048322

RESUMEN

We report the discovery and characterization of two porous Ce(III)-based metal-organic frameworks (MOFs) with the V-shaped linker molecules 4,4'-sulfonyldibenzoate (SDB2-) and 4,4'-(hexafluoroisopropylidene)bis(benzoate) (hfipbb2-). The compounds of framework composition [Ce2(H2O)(SDB)3] (1) and [Ce2(hfipbb)3] (2) were obtained by using a synthetic approach in acetonitrile that we recently established. Structure determination of 1 was accomplished from 3D electron diffraction (3D ED) data, while 2 could be refined against powder X-ray diffraction (PXRD) data using the crystal structure of an isostructural La-MOF as the starting model. Their framework structures consist of chain-like inorganic building units (IBUs) or hybrid-BUs that are interconnected by the V-shaped linker molecules to form framework structures with channel-type pores. The composition of both compounds was confirmed by PXRD, elemental analysis, as well as NMR and IR spectroscopy. Interestingly, despite the use of (NH4)2[CeIV(NO3)6] in the synthesis, cerium ions in both MOFs occur exclusively in the + III oxidation state as determined by X-ray absorption near edge structure (XANES) and X-ray photoelectron spectroscopy (XPS). Thermal analyses reveal remarkably high thermal stabilities of ≥400 °C for the MOFs. Initial N2 sorption measurements revealed the peculiar sorption behavior of 2 which prompted a deeper investigation by Ar and CO2 sorption experiments. The combination with nonlocal density functional theory (NL-DFT) calculations adds to the understanding of the nature of the different pore diameters in 2. An extensive quasi-simultaneous in situ XANES/XRD investigation was carried out to unveil the formation of Ce-MOFs during the solvothermal syntheses in acetonitrile. The crystallization of the two Ce(III)-MOFs presented herein as well as two previously reported Ce(IV)-MOFs, all obtained by a similar synthetic approach, were studied. While the XRD patterns show time-dependent MOF crystallization, the XANES data reveal the presence of Ce(III) intermediates and their subsequent conversion to the MOFs. The addition of acetic acid in combination with the V-shaped linker molecule was identified as the crucial factor for the formation of the crystalline Ce(III/IV)-MOFs.

6.
ACS Nano ; 17(21): 21595-21603, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37851935

RESUMEN

The power of isoreticular chemistry has been widely exploited to engineer metal-organic frameworks (MOFs) with fascinating molecular sieving and storage properties but is underexplored for designing MOFs with tunable optoelectronic properties. Herein, three dipyrazole-terminated XDIs (X = PM (pyromellitic), N (naphthalene), or P (perylene); DI = diimide) with different lengths and electronic properties are prepared and employed as linkers for the construction of an isoreticular series of Zn-XDI MOFs with distinct electrochromism. The MOFs are grown on fluorine-doped tin oxide (FTO) as high-quality crystalline thin films and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Due to the constituting electronically isolated XDI linkers, each member of the isoreticular thin film series exhibits two reversible one-electron redox events, each at a distinct electrochemical potential. The orientation of the MOFs as thin films as well as their isoreticular nature results in identical cation-coupled electron hopping transport rates in all three materials, as demonstrated by comparable apparent electron diffusion coefficients, Deapp. Upon electrochemical reduction to either the [XDI]•- or [XDI]2- state, each MOF undergoes characteristic changes in its optical properties as a function of linker length and redox state of the linker. Operando spectroelectrochemistry measurements reveal that Zn-PDI@FTO (PDI = perylene diimide) thin films exhibit a record high coloration efficiency of 941 cm2 C-1 at 746 nm, which is attributed to the maximized Faradaic transformations at each electronically isolated PDI unit. The electrochromic response of the thin film is retained to more than 99% over 100 reduction-oxidation cycles, demonstrating the applicability of the presented materials.

7.
Chemistry ; 29(53): e202301725, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37402648

RESUMEN

Functionalized triose-, furanose and chromane-derivatives were synthesized by the titled reactions. The sugar-assisted kinetic resolution/C-C bond-forming cascade processes generate a functionalized sugar derivative with a quaternary stereocenter in a highly enantioselective fashion (up to >99 % ee) by using a simple combination of metal and chiral amine co-catalysts. Notably, the interplay between the chiral sugar substrate and the chiral amino acid derivative allowed for the construction of a functionalized sugar product with high enantioselectivity (up to 99 %) also when using a combination of racemic amine catalyst (0 % ee) and metal catalyst.

8.
Chem Commun (Camb) ; 59(56): 8684-8687, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37345452

RESUMEN

Encapsulating and protecting dopamine from oxidation is a difficult challenge. We propose to use SU-101 BioMOF as a dopamine host, where we study different adsorption scenarios by a robust computational approach. Our results show that dopamine encapsulation is feasible with the formation of non-covalent interactions within the SU-101 pores. These computational results have been corroborated experimentally.

9.
Angew Chem Int Ed Engl ; 62(29): e202218679, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37102303

RESUMEN

The solution chemistry of aluminum is highly complex and various polyoxocations are known. Here we report on the facile synthesis of a cationic Al24 cluster that forms porous salts of composition [Al24 (OH)56 (CH3 COO)12 ]X4 , denoted CAU-55-X, with X=Cl- , Br- , I- , HSO4 - . Three-dimensional electron diffraction was employed to determine the crystal structures. Various robust and mild synthesis routes for the chloride salt [Al24 (OH)56 (CH3 COO)12 ]Cl4 in water were established resulting in high yields (>95 %, 215 g per batch) within minutes. Specific surface areas and H2 O capacities with maximum values of up to 930 m2 g-1 and 430 mg g-1 are observed. The particle size of CAU-55-X can be tuned between 140 nm and 1250 nm, permitting its synthesis as stable dispersions or as highly crystalline powders. The positive surface charge of the particles, allow fast and effective adsorption of anionic dye molecules and adsorption of poly- and perfluoroalkyl substances (PFAS).

10.
Angew Chem Int Ed Engl ; 62(20): e202301368, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36920275

RESUMEN

We report an efficient radical-mediated C-C coupling through photoredox-catalyzed reactions of 4-alkyl-dihydropyridines (DHPs) and vinylbenziodoxol(on)es (VBX, VBO). This transition-metal-free and mild photocatalytic method has excellent functional group tolerance and affords vinylated products in good yields, with complete retention of the alkene configuration. The utility of the methodology is demonstrated by the diastereoselective synthesis of C-vinyl glycosides. Preliminary mechanistic studies suggest that the C-C bond formation is stereospecific and proceeds through a concerted radical coupling transition state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA