Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 40(12): 1886-96, 2001 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-18357188

RESUMEN

In the fall of 1997 the Atmospheric Radiation Measurement program conducted a study of water-vapor-abundance-measurement at its southern Great Plains site. The large number of instruments included four solar radiometers to measure the columnar water vapor (CWV) by measuring solar transmittance in the 0.94-mum water-vapor absorption band. At first, no attempt was made to standardize our procedures to the same radiative transfer model and its underlying water-vapor spectroscopy. In the second round of comparison we used the same line-by-line code (which includes recently corrected H(2)O spectroscopy) to retrieve CWV from all four solar radiometers, thus decreasing the mean CWV by 8-13%. The remaining spread of 8% is an indication of the other-than-model uncertainties involved in the retrieval.

2.
Appl Opt ; 40(12): 1989-2003, 2001 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-18357202

RESUMEN

Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 degrees , 9.68 degrees , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305/311 and 305/318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305/311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305/311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).

3.
Appl Opt ; 37(18): 3923-41, 1998 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18273360

RESUMEN

Over a period of 3 years a precision Sun photometer (SPM) operating between 300 and 1025 nm was calibrated four times at three different high-mountain sites in Switzerland, Germany, and the United States by means of the Langley-plot technique. We found that for atmospheric window wavelengths the total error (2varsigma-statistical plus systematic errors) of the calibration constants V(0) (lambda), the SPM voltage in the absence of any attenuating atmosphere, can be kept below 1.6% in the UV-A and blue, 0.9% in the mid-visible, and 0.6% in the near-infrared spectral region. For SPM channels within strong water-vapor or ozone absorption bands a modified Langley-plot technique was used to determine V(0) (lambda) with a lower accuracy. Within the same period of time, we calibrated the SPM five times using irradiance standard lamps in the optical labs of the Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, Switzerland, and of the Remote Sensing Group of the Optical Sciences Center, University of Arizona, Tucson, Arizona. The lab calibration method requires knowledge of the extraterrestrial spectral irradiance. When we refer the standard lamp results to the World Radiation Center extraterrestrial solar irradiance spectrum, they agree with the Langley results within 2% at 6 of 13 SPM wavelengths. The largest disagreement (4.4%) is found for the channel centered at 610 nm. The results of these intercomparisons change significantly when the lamp results are referred to two different extraterrestrial solar irradiance spectra that have become recently available.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...