Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Nat Struct Mol Biol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773334

RESUMEN

Eukaryotic translation initiation factor (eIF)4A-a DEAD-box RNA-binding protein-plays an essential role in translation initiation. Recent reports have suggested helicase-dependent and helicase-independent functions for eIF4A, but the multifaceted roles of eIF4A have not been fully explored. Here we show that eIF4A1 enhances translational repression during the inhibition of mechanistic target of rapamycin complex 1 (mTORC1), an essential kinase complex controlling cell proliferation. RNA pulldown followed by sequencing revealed that eIF4A1 preferentially binds to mRNAs containing terminal oligopyrimidine (TOP) motifs, whose translation is rapidly repressed upon mTORC1 inhibition. This selective interaction depends on a La-related RNA-binding protein, LARP1. Ribosome profiling revealed that deletion of EIF4A1 attenuated the translational repression of TOP mRNAs upon mTORC1 inactivation. Moreover, eIF4A1 increases the interaction between TOP mRNAs and LARP1 and, thus, ensures stronger translational repression upon mTORC1 inhibition. Our data show the multimodality of eIF4A1 in modulating protein synthesis through an inhibitory binding partner and provide a unique example of the repressive role of a universal translational activator.

2.
Nat Chem Biol ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658655

RESUMEN

Calcium ions serve as key intracellular signals. Local, transient increases in calcium concentrations can activate calcium sensor proteins that in turn trigger downstream effectors. In neurons, calcium transients play a central role in regulating neurotransmitter release and synaptic plasticity. However, it is challenging to capture the molecular events associated with these localized and ephemeral calcium signals. Here we present an engineered biotin ligase that generates permanent molecular traces in a calcium-dependent manner. The enzyme, calcium-dependent BioID (Cal-ID), biotinylates nearby proteins within minutes in response to elevated local calcium levels. The biotinylated proteins can be identified via mass spectrometry and visualized using microscopy. In neurons, Cal-ID labeling is triggered by neuronal activity, leading to prominent protein biotinylation that enables transcription-independent activity labeling in the brain. In summary, Cal-ID produces a biochemical record of calcium signals and neuronal activity with high spatial resolution and molecular specificity.

3.
bioRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38370681

RESUMEN

Disordered regions within RNA binding proteins are required to control mRNA decay and protein synthesis. To understand how these disordered regions modulate gene expression, we surveyed regulatory activity across the entire disordered proteome using a high-throughput functional assay. We identified hundreds of regulatory sequences within intrinsically disordered regions and demonstrate how these elements cooperate with core mRNA decay machinery to promote transcript turnover. Coupling high-throughput functional profiling with mutational scanning revealed diverse molecular features, ranging from defined motifs to overall sequence composition, underlying the regulatory effects of disordered peptides. Machine learning analysis implicated aromatic residues in particular contexts as critical determinants of repressor activity, consistent with their roles in forming protein-protein interactions with downstream effectors. Our results define the molecular principles and biochemical mechanisms that govern post-transcriptional gene regulation by disordered regions and exemplify the encoding of diverse yet specific functions in the absence of well-defined structure.

4.
bioRxiv ; 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38260653

RESUMEN

Ded1 and Dbp1 are paralogous conserved RNA helicases that enable translation initiation in yeast. Ded1 has been heavily studied but the role of Dbp1 is poorly understood. We find that the expression of these two helicases is controlled in an inverse and condition-specific manner. In meiosis and other long-term starvation states, Dbp1 expression is upregulated and Ded1 is downregulated, whereas in mitotic cells, Dbp1 expression is extremely low. Inserting the DBP1 ORF in place of the DED1 ORF cannot replace the function of Ded1 in supporting translation, partly due to inefficient mitotic translation of the DBP1 mRNA, dependent on features of its ORF sequence but independent of codon optimality. Global measurements of translation rates and 5' leader translation, activity of mRNA-tethered helicases, ribosome association, and low temperature growth assays show that-even at matched protein levels-Ded1 is more effective than Dbp1 at activating translation, especially for mRNAs with structured 5' leaders. Ded1 supports halting of translation and cell growth in response to heat stress, but Dbp1 lacks this function, as well. These functional differences in the ability to efficiently mediate translation activation and braking can be ascribed to the divergent, disordered N- and C-terminal regions of these two helicases. Altogether, our data show that Dbp1 is a "low performance" version of Ded1 that cells employ in place of Ded1 under long-term conditions of nutrient deficiency.

5.
Cell Chem Biol ; 31(1): 10-13, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242091

RESUMEN

In the first of many thematic issues marking the 30th anniversary of Cell Chemical Biology, we highlight the contribution of chemical biology to RNA biology in a special issue on RNA modulation. We asked several leaders in the field to share their opinions on the current challenges and opportunities in RNA biology.

6.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38076849

RESUMEN

The impact of synonymous codon choice on protein output has important implications for understanding endogenous gene expression and design of synthetic mRNAs. Previously, we used a neural network model to design a series of synonymous fluorescent reporters whose protein output in yeast spanned a seven-fold range corresponding to their predicted translation speed. Here, we show that this effect is not due primarily to the established impact of slow elongation on mRNA stability, but rather, that an active mechanism further decreases the number of proteins made per mRNA. We combine simulations and careful experiments on fluorescent reporters to argue that translation initiation is limited on non-optimally encoded transcripts. Using a genome-wide CRISPRi screen to discover factors modulating the output from non-optimal transcripts, we identify a set of translation initiation factors including multiple subunits of eIF3 whose depletion restored protein output of a non-optimal reporter. Our results show that codon usage can directly limit protein production, across the full range of endogenous variability in codon usage, by limiting translation initiation.

7.
Science ; 382(6670): eabp9201, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37917677

RESUMEN

One-carbon metabolism is an essential branch of cellular metabolism that intersects with epigenetic regulation. In this work, we show how formaldehyde (FA), a one-carbon unit derived from both endogenous sources and environmental exposure, regulates one-carbon metabolism by inhibiting the biosynthesis of S-adenosylmethionine (SAM), the major methyl donor in cells. FA reacts with privileged, hyperreactive cysteine sites in the proteome, including Cys120 in S-adenosylmethionine synthase isoform type-1 (MAT1A). FA exposure inhibited MAT1A activity and decreased SAM production with MAT-isoform specificity. A genetic mouse model of chronic FA overload showed a decrease n SAM and in methylation on selected histones and genes. Epigenetic and transcriptional regulation of Mat1a and related genes function as compensatory mechanisms for FA-dependent SAM depletion, revealing a biochemical feedback cycle between FA and SAM one-carbon units.


Asunto(s)
Carbono , Cisteína , Epigénesis Genética , Formaldehído , Metionina Adenosiltransferasa , S-Adenosilmetionina , Animales , Ratones , Carbono/metabolismo , Epigénesis Genética/efectos de los fármacos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , S-Adenosilmetionina/antagonistas & inhibidores , S-Adenosilmetionina/metabolismo , Formaldehído/metabolismo , Formaldehído/toxicidad , Exposición a Riesgos Ambientales , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Cisteína/metabolismo , Humanos , Células Hep G2
8.
bioRxiv ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37986910

RESUMEN

Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the roles of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks to many neurologically relevant mRNAs in NPCs. Our data reveal eIF3 predominantly interacts with 3' untranslated region (3'-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. High eIF3 crosslinking at 3'-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling. We identify the transcriptional regulator inhibitor of DNA binding 2 (ID2) mRNA as a case in which active translation levels and eIF3 crosslinking are dramatically increased upon early NPC differentiation. Furthermore, we find that eIF3 engagement at 3'-UTR ends is dependent on polyadenylation. The results presented here show that eIF3 engages with 3'-UTR termini of highly translated mRNAs, supporting a role of mRNA circularization in the mechanisms governing mRNA translation in NPCs.

9.
Nat Methods ; 20(11): 1704-1715, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783882

RESUMEN

Ribosome profiling has unveiled diverse regulation and perturbations of translation through a transcriptome-wide survey of ribosome occupancy, read out by sequencing of ribosome-protected messenger RNA fragments. Generation of ribosome footprints and their conversion into sequencing libraries is technically demanding and sensitive to biases that distort the representation of physiological ribosome occupancy. We address these challenges by producing ribosome footprints with P1 nuclease rather than RNase I and replacing RNA ligation with ordered two-template relay, a single-tube protocol for sequencing library preparation that incorporates adaptors by reverse transcription. Our streamlined approach reduced sequence bias and enhanced enrichment of ribosome footprints relative to ribosomal RNA. Furthermore, P1 nuclease preserved distinct juxtaposed ribosome complexes informative about yeast and human ribosome fates during translation initiation, stalling and termination. Our optimized methods for mRNA footprint generation and capture provide a richer translatome profile with low input and fewer technical challenges.


Asunto(s)
Biosíntesis de Proteínas , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Perfilado de Ribosomas , Ribosomas/genética , Ribosomas/metabolismo , Transcriptoma , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
10.
Nat Struct Mol Biol ; 30(6): 740-752, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37231154

RESUMEN

Numerous proteins regulate gene expression by modulating mRNA translation and decay. To uncover the full scope of these post-transcriptional regulators, we conducted an unbiased survey that quantifies regulatory activity across the budding yeast proteome and delineates the protein domains responsible for these effects. Our approach couples a tethered function assay with quantitative single-cell fluorescence measurements to analyze ~50,000 protein fragments and determine their effects on a tethered mRNA. We characterize hundreds of strong regulators, which are enriched for canonical and unconventional mRNA-binding proteins. Regulatory activity typically maps outside the RNA-binding domains themselves, highlighting a modular architecture that separates mRNA targeting from post-transcriptional regulation. Activity often aligns with intrinsically disordered regions that can interact with other proteins, even in core mRNA translation and degradation factors. Our results thus reveal networks of interacting proteins that control mRNA fate and illuminate the molecular basis for post-transcriptional gene regulation.


Asunto(s)
Regulación de la Expresión Génica , Proteoma , ARN Mensajero , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/metabolismo
11.
bioRxiv ; 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37214807

RESUMEN

Protein synthesis is a crucial but metabolically costly biological process that must be tightly coordinated with cellular needs and nutrient availability. In response to environmental stress, translation initiation is modulated to control protein output while meeting new demands. The cap-binding protein eIF4E-the earliest contact between mRNAs and the translation machinery-serves as one point of control, but its contributions to mRNA-specific translation regulation remain poorly understood. To survey eIF4E-dependent translational control, we acutely depleted eIF4E and determined how this impacts protein synthesis. Despite its essentiality, eIF4E depletion had surprisingly modest effects on cell growth and protein synthesis. Analysis of transcript-level changes revealed that long-lived transcripts were downregulated, likely reflecting accelerated turnover. Paradoxically, eIF4E depletion led to simultaneous upregulation of genes involved in catabolism of aromatic amino acids, which arose as secondary effects of reduced protein biosynthesis on amino acid pools, and genes involved in the biosynthesis of amino acids. These futile cycles of amino acid synthesis and degradation were driven, in part, by translational activation of GCN4, a transcription factor typically induced by amino acid starvation. Furthermore, we identified a novel regulatory mechanism governing translation of PCL5, a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This translational control was partial dependent on a uniquely long poly-(A) tract in the PCL5 5' UTR and on poly-(A) binding protein. Collectively, these results highlight how eIF4E connects translation to amino acid homeostasis and stress responses and uncovers new mechanisms underlying how cells tightly control protein synthesis during environmental challenges.

12.
Elife ; 122023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36852480

RESUMEN

Plants often generate secondary metabolites as defense mechanisms against parasites. Although some fungi may potentially overcome the barrier presented by antimicrobial compounds, only a limited number of examples and molecular mechanisms of resistance have been reported. Here, we found an Aglaia plant-parasitizing fungus that overcomes the toxicity of rocaglates, which are translation inhibitors synthesized by the plant, through an amino acid substitution in a eukaryotic translation initiation factor (eIF). De novo transcriptome assembly revealed that the fungus belongs to the Ophiocordyceps genus and that its eIF4A, a molecular target of rocaglates, harbors an amino acid substitution critical for rocaglate binding. Ribosome profiling harnessing a cucumber-infecting fungus, Colletotrichum orbiculare, demonstrated that the translational inhibitory effects of rocaglates were largely attenuated by the mutation found in the Aglaia parasite. The engineered C. orbiculare showed a survival advantage on cucumber plants with rocaglates. Our study exemplifies a plant-fungus tug-of-war centered on secondary metabolites produced by host plants.


Although plants may seem like passive creatures, they are in fact engaged in a constant battle against the parasitic fungi that attack them. To combat these fungal foes, plants produce small molecules that act like chemical weapons and kill the parasite. However, the fungi sometimes fight back, often by developing enzymes that can break down the deadly chemicals into harmless products. One class of anti-fungal molecules that has drawn great interest is rocaglates, as they show promise as treatments for cancer and COVID-19. Rocaglates are produced by plants in the Aglaia family and work by targeting the fungal molecule eIF4A which is fundamental for synthesizing proteins. Since proteins perform most of the chemistry necessary for life, one might think that rocaglates could ward off any fungus. But Chen et al. discovered there is in fact a species of fungi that can evade this powerful defense mechanism. After seeing this new-found fungal species successfully growing on Aglaia plants, Chen et al. set out to find how it is able to protect itself from rocoglates. Genetic analysis of the fungus revealed that its eIF4A contained a single mutation that 'blocked' rocaglates from interacting with it. Chen et al. confirmed this effect by engineering a second fungal species (which infects cucumber plants) so that its elF4A protein contained the mutation found in the new fungus. Fungi with the mutated eIF4A thrived on cucumber leaves treated with a chemical derived from rocaglates, whereas fungi with the non-mutated version were less successful. These results shed new light on the constant 'arms race' between plants and their fungal parasites, with each side evolving more sophisticated ways to overcome the other's defenses. Chen et al. hope that identifying the new rocaglate-resistant eIF4A mutation will help guide the development and use of any therapies based on rocaglates. Further work investigating how often the mutation occurs in humans will also be important for determining how effective these therapies will be.


Asunto(s)
Aglaia , Hypocreales , Parásitos , Animales , Sustitución de Aminoácidos , Mutación
13.
bioRxiv ; 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36711859

RESUMEN

Translation initiation at alternative start sites can dynamically control the synthesis of two or more functionally distinct protein isoforms from a single mRNA. Alternate isoforms of the hematopoietic transcription factor CCAAT-enhancer binding protein α (C/EBPα) produced from different start sites exert opposing effects during myeloid cell development. This alternative initiation depends on sequence features of the CEBPA transcript, including a regulatory upstream open reading frame (uORF), but the molecular basis is not fully understood. Here we identify trans-acting factors that affect C/EBPα isoform choice using a sensitive and quantitative two-color fluorescence reporter coupled with CRISPRi screening. Our screen uncovered a role for the ribosome rescue factor PELOTA (PELO) in promoting expression of the longer C/EBPα isoform, by directly removing inhibitory unrecycled ribosomes and through indirect effects mediated by the mechanistic target of rapamycin (mTOR) kinase. Our work provides further mechanistic insights into coupling between ribosome recycling and translation reinitiation in regulation of a key transcription factor, with implications for normal hematopoiesis and leukemiagenesis.

15.
Bio Protoc ; 12(7): e4376, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35530514

RESUMEN

Genetic networks regulate nearly all biological processes, including cellular differentiation, homeostasis, and immune responses. Determining the precise role of each gene within a regulatory network can explain its overall, integrated function, and pinpoint mechanisms underlying misregulation in disease states. Transcriptional reporter assays are a useful tool for dissecting these genetic networks, because they link a molecular process to a measurable readout, such as the expression of a fluorescent protein. Here, we introduce a new technique that uses expressed RNA barcodes as reporters, to measure transcriptional changes induced by CRISPRi-mediated genetic perturbation across a diverse, genome-wide library of guide RNAs. We describe an exemplary reporter based on the promoter that drives His4 expression in these guidelines, which can be used as a framework to interrogate other expression phenotypes. In this workflow, a library of plasmids is assembled, encoding a CRISPRi guide RNA (gRNA) along with one or more transcriptional reporters that drive expression of guide-specific nucleotide barcode sequences. For example, when interrogating regulation of the budding yeast HIS4 promoter normalized against a control housekeeping promoter that drives Pgk1 expression, this plasmid library contains a gRNA expression cassette, a HIS4 reporter driving expression of one gRNA-specific nucleotide barcode, and a PGK1 reporter driving expression of a second, gRNA-specific barcode. Long-read sequencing is used to determine which gRNA is associated with these nucleotide barcodes. The plasmid library is then transformed into yeast cells, where each cell receives one plasmid, and experiences a genetic perturbation driven by the guide on that plasmid. The expressed RNA barcodes are extracted in bulk and quantified using high-throughput sequencing, thereby measuring the effect of their corresponding gRNA on barcoded reporter expression. In the case of the HIS4 reporter described above, guides disrupting translation elongation will increase expression of the associated HIS4 barcode specifically, without changing expression of the PGK1 control barcode. It is further possible to quantify plasmid abundance by DNA sequencing, as an additional approach to normalize for differences in plasmid abundance within the population of cells. This protocol outlines the steps to prepare barcode reporter CRISPRi plasmid libraries, link guides to barcodes with long-read sequencing, and measure expression changes through barcode RNA and DNA sequencing. This method is ideal for probing transcriptional or post-transcriptional regulation, as it measures the effects of a genetic perturbation by directly quantifying reporter RNA abundance, rather than relying on indirect growth or fluorescence readouts. Graphic abstract.

16.
Nat Chem Biol ; 18(7): 751-761, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35637349

RESUMEN

The selenoprotein glutathione peroxidase 4 (GPX4) prevents ferroptosis by converting lipid peroxides into nontoxic lipid alcohols. GPX4 has emerged as a promising therapeutic target for cancer treatment, but some cancer cells are resistant to ferroptosis triggered by GPX4 inhibition. Using a chemical-genetic screen, we identify LRP8 (also known as ApoER2) as a ferroptosis resistance factor that is upregulated in cancer. Loss of LRP8 decreases cellular selenium levels and the expression of a subset of selenoproteins. Counter to the canonical hierarchical selenoprotein regulatory program, GPX4 levels are strongly reduced due to impaired translation. Mechanistically, low selenium levels result in ribosome stalling at the inefficiently decoded GPX4 selenocysteine UGA codon, leading to ribosome collisions, early translation termination and proteasomal clearance of the N-terminal GPX4 fragment. These findings reveal rewiring of the selenoprotein hierarchy in cancer cells and identify ribosome stalling and collisions during GPX4 translation as ferroptosis vulnerabilities in cancer.


Asunto(s)
Ferroptosis , Selenio , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ribosomas/metabolismo , Selenio/metabolismo , Selenio/farmacología , Selenoproteínas/genética
17.
FEBS J ; 289(11): 3101-3114, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34914197

RESUMEN

DNA damage activates a robust transcriptional stress response, but much less is known about how DNA damage impacts translation. The advent of genome editing with Cas9 has intensified interest in understanding cellular responses to DNA damage. Here, we find that DNA double-strand breaks (DSBs), including those induced by Cas9, trigger the loss of ribosomal protein RPS27A from ribosomes via p53-independent proteasomal degradation. Comparisons of Cas9 and dCas9 ribosome profiling and mRNA-seq experiments reveal a global translational response to DSBs that precedes changes in transcript abundance. Our results demonstrate that even a single DSB can lead to altered translational output and ribosome remodeling, suggesting caution in interpreting cellular phenotypes measured immediately after genome editing.


Asunto(s)
Roturas del ADN de Doble Cadena , Edición Génica , Sistemas CRISPR-Cas , Daño del ADN/genética , Reparación del ADN , Edición Génica/métodos , Proteínas Ribosómicas/genética
18.
Elife ; 102021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34970966

RESUMEN

Activation of T cells requires a rapid surge in cellular protein synthesis. However, the role of translation initiation in the early induction of specific genes remains unclear. Here, we show human translation initiation factor eIF3 interacts with select immune system related mRNAs including those encoding the T cell receptor (TCR) subunits TCRA and TCRB. Binding of eIF3 to the TCRA and TCRB mRNA 3'-untranslated regions (3'-UTRs) depends on CD28 coreceptor signaling and regulates a burst in TCR translation required for robust T cell activation. Use of the TCRA or TCRB 3'-UTRs to control expression of an anti-CD19 chimeric antigen receptor (CAR) improves the ability of CAR-T cells to kill tumor cells in vitro. These results identify a new mechanism of eIF3-mediated translation control that can aid T cell engineering for immunotherapy applications.


Asunto(s)
Factor 3 de Iniciación Eucariótica/genética , Activación de Linfocitos/genética , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Línea Celular , Factor 3 de Iniciación Eucariótica/metabolismo , Humanos
19.
eNeuro ; 8(6)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34759048

RESUMEN

The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) causes familial Parkinson's disease (PD) and is also found in a subset of idiopathic cases. Prior studies in Drosophila and human induced pluripotent stem cell (iPSC)-derived dopamine neurons uncovered a pronounced effect of G2019S LRRK2 on mRNA translation. It was previously reported that G2019S LRRK2 promotes translation of mRNAs with complex 5' untranslated region (UTR) secondary structure, resulting in increased expression of calcium channels and dysregulated calcium homeostasis in human dopamine neurons. Here, we show that dysregulated translation occurs in the brains of mammalian LRRK2 models in vivo Through ribosome profiling studies of global translation, we observe that mRNAs with complex 5'UTR structure are also preferentially translated in the G2019S LRRK2-expressing mouse brain. Reporter assays suggest that this 5'UTR preference is independent of translation initiation factors. Conversely, translation of mRNAs with complex 5'UTR secondary structure is downregulated in LRRK2 knock-out (KO) mouse brain, indicating a robust link between LRRK2 kinase activity and translation of mRNA with complex 5'UTR structure. Further, substantia nigra pars compacta (SNpc) dopamine neurons in the G2019S LRRK2-expressing brain exhibit increased calcium influx, which is consistent with the previous report from human dopamine neurons. These results collectively suggest that LRRK2 plays a mechanistic role in translational regulation, and the G2019S mutation in LRRK2 causes translational defects leading to calcium dysregulation in the mammalian brain.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Animales , Encéfalo/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Enfermedad de Parkinson/genética , Biosíntesis de Proteínas
20.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34649994

RESUMEN

Selfish, non-long terminal repeat (non-LTR) retroelements and mobile group II introns encode reverse transcriptases (RTs) that can initiate DNA synthesis without substantial base pairing of primer and template. Biochemical characterization of these enzymes has been limited by recombinant expression challenges, hampering understanding of their properties and the possible exploitation of their properties for research and biotechnology. We investigated the activities of representative RTs using a modified non-LTR RT from Bombyx mori and a group II intron RT from Eubacterium rectale Only the non-LTR RT supported robust and serial template jumping, producing one complementary DNA (cDNA) from several templates each copied end to end. We also discovered an unexpected terminal deoxynucleotidyl transferase activity of the RTs that adds nucleotide(s) of choice to 3' ends of single- and/or double-stranded RNA or DNA. Combining these two types of activity with additional insights about nontemplated nucleotide additions to duplexed cDNA product, we developed a streamlined protocol for fusion of next-generation sequencing adaptors to both cDNA ends in a single RT reaction. When benchmarked using a reference pool of microRNAs (miRNAs), library production by Ordered Two-Template Relay (OTTR) using recombinant non-LTR retroelement RT outperformed all commercially available kits and rivaled the low bias of technically demanding home-brew protocols. We applied OTTR to inventory RNAs purified from extracellular vesicles, identifying miRNAs as well as myriad other noncoding RNAs (ncRNAs) and ncRNA fragments. Our results establish the utility of OTTR for automation-friendly, low-bias, end-to-end RNA sequence inventories of complex ncRNA samples.


Asunto(s)
ARN no Traducido/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos , Moldes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...