Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 14(1): 53, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461609

RESUMEN

BACKGROUND: Visceral leishmaniasis (VL) and zoonotic cutaneous leishmaniasis (ZCL) are of public health concern in Merti sub-County, Kenya, but epidemiological data on transmission, vector abundance, distribution, and reservoir hosts remain limited. To better understand the disease and inform control measures to reduce transmission, we investigated the abundance and distribution of sand fly species responsible for Leishmania transmission in the sub-County and their blood-meal hosts. METHODS: We conducted an entomological survey in five villages with reported cases of VL in Merti sub-County, Kenya, using CDC miniature light traps and castor oil sticky papers. Sand flies were dissected and identified to the species level using standard taxonomic keys and PCR analysis of the cytochrome c oxidase subunit 1 (cox1) gene. Leishmania parasites were detected and identified by PCR and sequencing of internal transcribed spacer 1 (ITS1) genes. Blood-meal sources of engorged females were identified by high-resolution melting analysis of vertebrate cytochrome b (cyt-b) gene PCR products. RESULTS: We sampled 526 sand flies consisting of 8 species, Phlebotomus orientalis (1.52%; n = 8), and 7 Sergentomyia spp. Sergentomyia squamipleuris was the most abundant sand fly species (78.71%; n = 414) followed by Sergentomyia clydei (10.46%; n = 55). Leishmania major, Leishmania donovani, and Trypanosoma DNA were detected in S. squamipleuris specimens. Humans were the main sources of sand fly blood meals. However, we also detected mixed blood meals; one S. squamipleuris specimen had fed on both human and mouse (Mus musculus) blood, while two Ph. orientalis specimens fed on human, hyrax (Procavia capensis), and mouse (Mus musculus) blood. CONCLUSIONS: Our findings implicate the potential involvement of S. squamipleuris in the transmission of Leishmania and question the dogma that human leishmaniases in the Old World are exclusively transmitted by sand flies of the Phlebotomus genus. The presence of Trypanosoma spp. may indicate mechanical transmission, whose efficiency should be investigated. Host preference analysis revealed the possibility of zoonotic transmission of leishmaniasis and other pathogens in the sub-County. Leishmania major and L. donovani are known to cause ZCL and VL, respectively. However, the reservoir status of the parasites is not uniform. Further studies are needed to determine the reservoir hosts of Leishmania spp. in the area.


Asunto(s)
ADN Protozoario/genética , Leishmania donovani/genética , Leishmania major/genética , Leishmaniasis Visceral/epidemiología , Psychodidae/parasitología , Trypanosoma/genética , Distribución Animal , Animales , Sangre/metabolismo , ADN Intergénico/genética , Entomología/métodos , Femenino , Humanos , Damanes , Insectos Vectores/parasitología , Kenia/epidemiología , Leishmania donovani/aislamiento & purificación , Leishmania major/aislamiento & purificación , Leishmaniasis Visceral/prevención & control , Leishmaniasis Visceral/transmisión , Masculino , Comidas , Ratones , Psychodidae/clasificación , Psychodidae/genética , Psychodidae/fisiología , Trypanosoma/aislamiento & purificación
2.
PLoS Negl Trop Dis ; 13(10): e0007712, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31626654

RESUMEN

BACKGROUND: Phlebotomus (Larroussius) guggisbergi is among the confirmed vectors for cutaneous leishmaniasis (CL) transmission in Kenya. This scarring and stigmatizing form of leishmaniasis accounts for over one million annual cases worldwide. Most recent CL epidemics in Kenya have been reported in Gilgil, Nakuru County, where the disease has become a public health issue. However, little is known about the factors that drive its transmission. Here, we sought to determine the occurrence, distribution and host blood feeding preference of the vectors, and to identify Leishmania species and infection rates in sandflies using molecular techniques. This information could lead to a better understanding of the disease transmission and improvement of control strategies in the area. METHODOLOGY/ PRINCIPAL FINDINGS: An entomological survey of sandflies using CDC light traps was conducted for one week per month in April 2016, and in June and July 2017 from five villages of Gilgil, Nakuru county; Jaica, Sogonoi, Utut, Gitare and Njeru. Sandflies were identified to species level using morphological keys and further verified by PCR analysis of cytochrome c oxidase subunit I (COI) gene. Midguts of female sandflies found to harbour Leishmania were ruptured and the isolated parasites cultured in Novy-MacNeal-Nicolle (NNN) media overlaid with Schneider's insect media to identify the species. Leishmania parasite screening and identification in 198 randomly selected Phlebotomus females and parasite cultures was done by PCR-RFLP analysis of ITS1 gene, nested kDNA-PCR and real-time PCR-HRM followed by sequencing. Bloodmeal source identification was done by real-time PCR-HRM of the vertebrate cytochrome-b gene. A total of 729 sandflies (males: n = 310; females: n = 419) were collected from Utut (36.6%), Jaica (24.3%), Sogonoi (34.4%), Njeru (4.5%), and Gitare (0.1%). These were found to consist of nine species: three Phlebotomus spp. and six Sergentomyia spp. Ph. guggisbergi was the most abundant species (75.4%, n = 550) followed by Ph. saevus sensu lato (11.3%, n = 82). Sandfly species distribution across the villages was found to be significantly different (p<0.001) with Jaica recording the highest diversity. The overall Leishmania infection rate in sandflies was estimated at 7.07% (14/198). Infection rates in Ph. guggisbergi and Ph. saevus s.l. were 9.09% (12/132) and 3.57% (2/56) respectively. L. tropica was found to be the predominant parasite in Gilgil with an overall infection rate of 6.91% (13/188) in Ph. guggisbergi (n = 11) and Ph. saevus s.l. (n = 2) sandflies. However, PCR analysis also revealed L. major infection in one Ph. guggisbergi specimen. Bloodmeal analysis in the 74 blood-fed sandflies disclosed a diverse range of vertebrate hosts in Ph. guggisbergi bloodmeals, while Ph. saevus s.l. fed mainly on humans. CONCLUSIONS/ SIGNIFICANCE: The high infection rates of L. tropica and abundance of Ph. guggisbergi in this study confirms this sandfly as a vector of L. tropica in Kenya. Furthermore, isolation of live L. tropica parasites from Ph. saevus s.l. suggest that there are at least three potential vectors of this parasite species in Gilgil; Ph. guggisbergi, Ph. aculeatus and Ph. saevus s.l. Molecular identification of L. major infections in Ph. guggisbergi suggested this sandfly species as a potential permissive vector of L. major, which needs to be investigated further. Sandfly host preference analysis revealed the possibility of zoonotic transmissions of L. tropica in Gilgil since the main vector (Ph. guggisbergi) does not feed exclusively on humans but also other vertebrate species. Further investigations are needed to determine the potential role of these vertebrate species in L. tropica and L. major transmission in the area.


Asunto(s)
Leishmania major/fisiología , Leishmania tropica/fisiología , Leishmaniasis Cutánea/transmisión , Phlebotomus/parasitología , Psychodidae/parasitología , Animales , Entomología , Femenino , Humanos , Kenia/epidemiología , Leishmaniasis Cutánea/epidemiología , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción
3.
J Ethnopharmacol ; 123(3): 504-9, 2009 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19501282

RESUMEN

Indigenous rural communities in the tropics manage parasitic diseases, like malaria and leishmaniasis, using herbal drugs. The efficacy, dosage, safety and active principles of most of the herbal preparations are not known. Extracts from 6 selected plant species, used as medicinal plants by indigenous local communities in Kenya, were screened for in vitro anti-plasmodial and anti-leishmanial activity, against 2 laboratory-adapted Plasmodium falciparum isolates (D6, CQ-sensitive and W2, CQ-resistant) and Leishmania major (IDU/KE/83=NLB-144 strain), respectively. The methanol extract of Suregada zanzibariensis leaves exhibited good anti-plasmodial activity (IC(50) 4.66+/-0.22 and 1.82+/-0.07 microg/ml for D6 and W2, respectively). Similarly, the methanol extracts of Albizia coriaria (IC(50) 37.83+/-2.11 microg/ml for D6) and Aspergillus racemosus (32.63+/-2.68 and 33.95+/-2.05 microg/ml for D6 and W2, respectively) had moderate anti-plasmodial activity. Acacia tortilis (IC(50) 85.73+/-3.36 microg/ml for W2) and Albizia coriaria (IC(50) 71.17+/-3.58 microg/ml for W2) methanol extracts and Aloe nyeriensis var kedongensis (IC(50) 87.70+/-2.98 and 67.84+/-2.12 microg/ml for D6 and W2, respectively) water extract exhibited mild anti-plasmodial activity. The rest of the extracts did not exhibit any anti-plasmodial activity. Although the leishmanicidal activity of extracts were lower than for pentosam (80%), reasonable activity was observed for Aloe nyeriensis methanol (68.4+/-6.3%), Albizia coriara water (66.7+/-5.0%), Maytenus putterlickoides methanol (60.0+/-6.23%), Asparagus racemosus methanol and water (58.3+/-8.22 and 56.8+/-6.58%, respectively), Aloe nyeriensis water (53.3+/-5.1%) and Acacia tortilis water (52.9+/-6.55%) extracts at 1000 microg/ml. Leishmania major infected macrophages treated with methanol extracts of Suregada zanzibariensis and Aloe nyeriensis var kedongensis and pentostam had infection rates of 28+/-2.11, 30+/-1.22 and 40+/-3.69%, respectively at 1000 microg/ml, indicating better anti-leishmanial activity for the extracts. The methanol extract of Albizia coriara (44.0+/-3.69%) and aqueous extracts of Asparagus racemosus (42+/-3.84%) and Acacia tortilis (44+/-5.59%) had similar activity to pentosam. Multiplication indices for Leishmania major amastigotes treated with methanol extracts of Albizia coriaria, Suregada zanzibariensis and Aloe nyeriensis var kedongensis, aqueous extract of Acacia tortilis and pentosam were 28.5+/-1.43, 29.4+/-2.15, 31.1+/-2.22, 35.9+/-3.49 and 44.0+/-3.27%, respectively, at 1000 microg/ml, confirming better anti-leishmanial activity for the extracts. Aqueous extracts of Aloe nyeriensis (46.7+/-3.28%) and Albizia coriaria (47.5+/-3.21%) had similar activity level to pentosam. The plant extracts have better inhibitory activity while pentosam has better leishmanicidal activity. All extracts exhibited very low cytotoxicity (CC(50) > 500 microg/ml) against human embryonic lung fibroblast (HELF) cells. The investigations demonstrated the efficacy and safety of some extracts of plants that are used by rural indigenous communities for the treatment of parasitic diseases.


Asunto(s)
Antimaláricos/farmacología , Leishmania major/efectos de los fármacos , Magnoliopsida , Extractos Vegetales/farmacología , Plantas Medicinales , Tripanocidas/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Fibroblastos/efectos de los fármacos , Humanos , Macrófagos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...