Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(2): e10987, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38371863

RESUMEN

Landlocking of diadromous fish in freshwater systems can have significant genomic consequences. For instance, the loss of the migratory life stage can dramatically reduce gene flow across populations, leading to increased genetic structuring and stronger effects of local adaptation. These genomic consequences have been well-studied in some mainland systems, but the evolutionary impacts of landlocking in island ecosystems are largely unknown. In this study, we used a genotyping-by-sequencing (GBS) approach to examine the evolutionary history of landlocking in common smelt (Retropinna retropinna) on Chatham Island, a small isolated oceanic island 800 kilometres east of mainland New Zealand. We examined the relationship between Chatham Island and mainland smelt and used coalescent analyses to test the number and timing of landlocking events on Chatham Island. Our genomic analysis, based on 21,135 SNPs across 169 individuals, revealed that the Chatham Island smelt was genomically distinct from the mainland New Zealand fish, consistent with a single ancestral colonisation event of Chatham Island in the Pleistocene. Significant genetic structure was also evident within the Chatham Island smelt, with a diadromous Chatham Island smelt group, along with three geographically structured landlocked groups. Coalescent demographic analysis supported three independent landlocking events, with this loss of diadromy significantly pre-dating human colonisation. Our results illustrate how landlocking of diadromous fish can occur repeatedly across a narrow spatial scale, and highlight a unique system to study the genomic basis of repeated adaptation.

2.
Virology ; 587: 109884, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37757732

RESUMEN

Fish viromes often provide insights into the origin and evolution of viruses affecting tetrapods, including those associated with imporant human diseases. However, despite fish being the most diverse vertebrate group, their viruses are still understudied. We investigated the viromes of fish on Chatham Island (Rekohu), a geographically isolated island housing 9% of New Zealand's threatened endemic fish species. Using metatranscriptomics, we analyzed samples from seven host species across 16 waterbodies. We identified 19 fish viruses, including 16 potentially novel species, expanding families such as the Coronaviridae, Hantaviridae, Poxviridae, and the recently proposed Tosoviridae. Surprisingly, virome composition was not influenced by the ecological factors measured and smelt (Retropinna retropinna) viromes were consistent across lakes despite differences in host life history, seawater influence, and community richness. Overall, fish viromes across Rekohu were highly diverse and revealed a long history of co-divergence between host and virus despite their unique and geographically isolated ecosystem.

3.
Sci Rep ; 12(1): 4309, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279693

RESUMEN

Understanding how marine food webs are affected by anthropogenic stressors is an important steppingstone toward the improved management of natural resources. Stable isotope analysis of historical and modern samples spanning a century indicated that the niche width of an exploited fish community increased after the expansion of New Zealand fisheries. Since the 2000s most species increased their reliance on food webs supported by pelagic production, compared to coastal production supported by macroalgae, and shifted to a higher trophic level. Overall changes were coincident with ocean warming, climate oscillations, prey abundance and fishing intensity, but their effects were specific to each fish assemblage analyzed. Data derived from historical samples revealed how anthropogenic stressors can drive long-term shifts in the trophic structure of an exploited fish community.


Asunto(s)
Explotaciones Pesqueras , Algas Marinas , Animales , Clima , Cambio Climático , Ecosistema , Peces , Cadena Alimentaria
4.
Viruses ; 14(2)2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35215850

RESUMEN

Viruses that infect fish are understudied, yet they provide important evolutionary context to the viruses that infect terrestrial vertebrates. We surveyed gill tissue meta-transcriptomes collected from two species of native freshwater fish from Aotearoa New Zealand-Retropinna retropinna and Gobiomorphus cotidianus. A total of 64 fish were used for gill tissue meta-transcriptomic sequencing, from populations with contrasting life histories-landlocked (i.e., lacustrine) and diadromous-on the South Island and Chatham Islands. We observed that both viral richness and taxonomic diversity were significantly associated with life history and host species, with lacustrine R. retropinna characterised by higher viral alpha diversity than diadromous R. retropinna. Additionally, we observed transcripts of fish viruses from 12 vertebrate host-associated virus families, and phylogenetically placed eight novel RNA viruses and three novel DNA viruses in the Astroviridae, Paramyxoviridae, Orthomyxoviridae, Rhabdoviridae, Totiviridae, Poxviridae, Alloherpesviridae, and Adintoviridae in their evolutionary contexts. These results represent an important survey of the viruses that infect two widespread native fish species in New Zealand, and provide insight useful for future fish virus surveys.


Asunto(s)
Virus ADN/genética , Peces/virología , Virus ARN/genética , Viroma , Animales , Ecosistema , Agua Dulce , Branquias/virología , Especificidad del Huésped , Rasgos de la Historia de Vida , Nueva Zelanda , Filogenia , Agua de Mar , Transcriptoma
5.
Biol Lett ; 17(8): 20210069, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34376076

RESUMEN

Anthropogenic environmental change can underpin major shifts in natural selective regimes, and can thus alter the evolutionary trajectories of wild populations. However, little is known about the evolutionary impacts of deforestation-one of the most pervasive human-driven changes to terrestrial ecosystems globally. Absence of forest cover (i.e. exposure) has been suggested to play a role in selecting for insect flightlessness in montane ecosystems. Here, we capitalize on human-driven variation in alpine treeline elevation in New Zealand to test whether anthropogenic deforestation has caused shifts in the distributions of flight-capable and flightless phenotypes in a wing-polymorphic lineage of stoneflies from the Zelandoperla fenestrata species complex. Transect sampling revealed sharp transitions from flight-capable to flightless populations with increasing elevation. However, these phenotypic transitions were consistently delineated by the elevation of local treelines, rather than by absolute elevation, providing a novel example of human-driven evolution in response to recent deforestation. The inferred rapid shifts to flightlessness in newly deforested regions have implications for the evolution and conservation of invertebrate biodiversity.


Asunto(s)
Ecosistema , Insectos , Animales , Biodiversidad , Conservación de los Recursos Naturales , Bosques , Humanos , Alas de Animales
6.
Ecol Evol ; 11(10): 5025-5037, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025989

RESUMEN

Foraging niche variation within a species can contribute to the maintenance of phenotypic diversity. The multiniche model posits that phenotypes occupying different niches can contribute to the maintenance of balanced polymorphisms. Using coastal populations of black bears (Ursus americanus kermodei) from British Columbia, Canada, we examined potential foraging niche divergence between phenotypes (black and white "Spirit" coat color) and between genotypes (black-coated homozygote and heterozygous). We applied the Bayesian multivariate models, with biotracers of diet (δ13C and δ15N) together comprising the response variable, to draw inference about foraging niche variation. Variance-covariance matrices from multivariate linear mixed-effect models were visualized as the Bayesian standard ellipses in δ13C and δ15N isotopic space to assess potential seasonal and annual niche variation between phenotypes and genotypes. We did not detect a difference in annual isotopic foraging niche area in comparisons between genotypes or phenotypes. Consistent with previous field experimental and isotopic analyses, however, we found that white phenotype Spirit bears were modestly more enriched in δ15N during the fall foraging season, though with our modest sample sizes these results were not significant. Although also not statistically significant, variation in isotopic niches between genotypes revealed that heterozygotes were moderately more enriched in δ13C along hair segments grown during fall foraging compared with black-coated homozygotes. To the extent to which the pattern of elevated δ15N and δ13C may signal the consumption of salmon (Oncorhynchus spp.), as well as the influence of salmon consumption on reproductive fitness, these results suggest that black-coated heterozygotes could have a minor selective advantage in the fall compared with black-coated homozygotes. More broadly, our multivariate approach, coupled with knowledge of genetic variation underlying a polymorphic trait, provides new insight into the potential role of a multiniche mechanism in maintaining this rare morph of conservation priority in Canada's Great Bear Rainforest and could offer new understanding into polymorphisms in other systems.

7.
Ecol Evol ; 9(18): 10630-10643, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31624571

RESUMEN

Intraspecific trait variation may result from "carryover effects" of variability of environments experienced at an earlier life stage. This phenomenon is particularly relevant in partially migrating populations composed of individuals with divergent early life histories. While many studies have addressed the causes of partial migration, few have investigated the consequences for between-individual variability later in life.We studied carryover effects of larval environment in a facultatively diadromous New Zealand fish, Gobiomorphus cotidianus, along an estuarine salinity gradient. We investigated the implications of varying environmental conditions during this critical stage of ontogeny for adult phenotype.We inferred past environmental history of wild-caught adult fish using otolith microchemistry (Sr/Ca) as a proxy for salinity. We tested for main and interactive effects of larval and adult environment on a suite of traits, including growth rates, behavior (exploration and activity), parasite load, and diet (stable isotopes and gut contents).We found a Sr/Ca consistent with a continuum from freshwater to brackish environments, and with different trajectories from juvenile to adult habitat. Fish with Sr/Ca indicating upstream migration were more vulnerable to trematode infection, suggesting a mismatch to freshwater habitat. Diet analysis suggested an interactive effect of larval and adult environments on trophic position and diet preference, while behavioral traits were unrelated to environment at any life stage. Growth rates did not seem to be affected by past environment.Overall, we show that early life environment can have multiple effects on adult performance and ecology, with the potential for lifetime fitness trade-offs associated with life history. Our study highlights that even relatively minor variation in rearing conditions may be enough to generate individual variation in natural populations.

8.
Mol Ecol ; 28(13): 3141-3150, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31038802

RESUMEN

Alpine ecosystems are frequently characterized by an abundance of wing-reduced insect species, but the drivers of this biodiversity remain poorly understood. Insect wing reduction in these environments has variously been attributed to altitude, temperature, isolation, habitat stability or decreased habitat size. We used fine-scale ecotypic and genomic analyses, along with broad-scale distributional analyses of ecotypes, to unravel the ecological drivers of wing reduction in the wing-dimorphic stonefly Zelandoperla fenestrata complex. Altitudinal transects within populations revealed dramatic wing reduction over very fine spatial scales, tightly linked to the alpine treeline. Broad biogeographical analyses confirm that the treeline has a much stronger effect on these ecotype distributions than altitude per se. Molecular analyses revealed parallel genomic divergence between vestigial-winged (high altitude) and full-winged (low altitude) ecotypes across distinct streams. These data thus highlight the role of the alpine treeline as a key driver of rapid speciation, providing a new model for ecological diversification along exposure gradients.


Asunto(s)
Ecotipo , Especiación Genética , Neoptera/anatomía & histología , Neoptera/genética , Alas de Animales/anatomía & histología , Altitud , Animales , Genética de Población , Modelos Genéticos , Nueva Zelanda , Ríos
9.
Proc Biol Sci ; 286(1902): 20190369, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31039715

RESUMEN

Competition plays a central role in the maintenance of biodiversity. A backbone of classic niche theory is that local coexistence of competitors is favoured by the contraction or divergence of species' niches. However, this effect should depend on the diversity of resources available in the local environment, particularly when resources vary in multiple ecological dimensions. Here, we investigated how available resource breadth (i.e. prey diversity) and competition together shape multidimensional niche variation (between and within individuals) and interspecific niche overlap in 42 populations of congeneric tropical frog species. We modelled realized niches in two key trophic dimensions (prey size and carbon stable isotopes) and sampled available food resources to quantify two-dimensional resource breadth. We found a 14-fold variation in multidimensional population niche width across populations, most of which was accounted for by within-individual diet variation. This striking variation was predicted by an interaction whereby individual niche breadth increased with resource breadth and decreased with the number of congeneric competitors. These ecological gradients also interact to influence the degree of niche overlap between species, which surprisingly decreased with population total niche width, providing novel insights on how similar species can coexist in local communities. Together, our results emphasize that patterns of exploitation of resources in multiple dimensions are driven by both competitive interactions and extrinsic factors such as local resource breadth.


Asunto(s)
Anuros/fisiología , Dieta , Ambiente , Cadena Alimentaria , Animales , Brasil , Isótopos de Carbono/análisis , Modelos Biológicos
10.
Ecol Evol ; 8(16): 8256-8265, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30250700

RESUMEN

Variation in behavioral traits among individuals within a population can have implications for food webs and ecosystems. Temperature change also alters food web structure and function, but potential interactions between warming and intraspecific behavioral variation are largely unexplored. We aimed to test how increased temperature, individual activity level of a predatory backswimmer (Anisops assimilis), and their interaction influenced the strength of top-down control of zooplankton and phytoplankton. We used stable isotopes to support our assumption that the study population of A. assimilis is zooplanktivorous, and behavioral trials to confirm that activity level is a repeatable trait. We established freshwater microcosms to test for effects of warming, backswimmer presence, and backswimmer behavioral type on zooplankton density, zooplankton composition, and phytoplankton chlorophyll a. Top-down control was present and was generally stronger at increased temperature. There was no indication that predator behavioral type influenced the strength of top-down control either on its own or interactively with temperature. Predator behavioral type may not be associated with ecologically important function in this species at the temporal and spatial scales addressed in this study, but the links between behavior, temperature, and food web processes are worthy of broader exploration.

11.
PeerJ ; 6: e4807, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29785354

RESUMEN

The ecological multifunctionality of colour often results in multiple selective pressures operating on a single trait. Most research on colour evolution focuses on males because they are the most conspicuous sex in most species. This bias can limit inferences about the ecological drivers of colour evolution. For example, little is known about population divergence in colour of female threespine stickleback (Gasterosteus aculeatus), which is among the most intensively-studied model vertebrates in evolution, ecology, and behaviour. In contrast, the evolution and ecology of colour in male stickleback has received considerable attention. One aspect of female colouration that is lacking previous research is non-ornamental body colour. Non-ornamental colour can play defensive and social roles, and indicate other aspects of female stickleback ecology. To remedy this knowledge gap, we measured the colour and brightness of one dorsal and one ventral lateral area on female stickleback from nine lake populations on Vancouver Island. We found that lake populations varied in overall colour brightness and dorso-ventral contrast. In addition, we found that female brightness increased with lake size, indicating potential ecological drivers of these colour differences. Our results demonstrate that there is substantial scope for future research on female colour diversification, which has been overlooked because past researchers focused on dramatic male nuptial colours.

12.
Ecology ; 99(3): 536-549, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29282710

RESUMEN

The inherently multidimensional nature of the niche has not yet been integrated into the investigation of individual niche specialization within populations. We propose a framework for modeling the between- and within-individual components of the population niche as a set of variance-covariance matrices, which can be visualized with ellipses or ellipsoids. These niche components can be inferred using multiple response mixed models, and can incorporate diverse types of data, including diet composition, stable isotopes, spatial location, and other continuous measures of niche dimensions. We outline how considering both individual and population niches in multiple dimensions may enhance our understanding of key concepts in ecology and evolution. Considering multiple dimensions as well as the within-individual component of variation can lead to more meaningful measures of niche overlap between species. The impact of a population on its food web or ecosystem can depend on the degree of individual variation (via Jensen's inequality), and we suggest how the dimensionality of individual specialization could amplify this effect. Finally, we draw from concepts in quantitative genetics and the study of animal personalities to propose new hypotheses about the ecological and evolutionary basis of niche shifts in multiple dimensions. We illustrate key ideas using empirical data from sea otters, wetland frogs, and threespine stickleback, and discuss outstanding questions about the consequences of multidimensional niche variation. Setting variation among individuals in an explicitly multivariate framework has the potential to transform our understanding of a range of ecological and evolutionary processes.


Asunto(s)
Nutrias , Smegmamorpha , Animales , Dieta , Ecología , Ecosistema
13.
Am Nat ; 190(S1): S13-S28, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28731829

RESUMEN

Understanding processes that have shaped broad-scale biodiversity patterns is a fundamental goal in evolutionary biology. The development of phylogenetic comparative methods has yielded a tool kit for analyzing contemporary patterns by explicitly modeling processes of change in the past, providing neontologists tools for asking questions previously accessible only for select taxa via the fossil record or laboratory experimentation. The comparative approach, however, differs operationally from alternative approaches to studying convergence in that, for studies of only extant species, convergence must be inferred using evolutionary process models rather than being directly measured. As a result, investigation of evolutionary pattern and process cannot be decoupled in comparative studies of convergence, even though such a decoupling could in theory guard against adaptationist bias. Assumptions about evolutionary process underlying comparative tools can shape the inference of convergent pattern in sometimes profound ways and can color interpretation of such patterns. We discuss these issues and other limitations common to most phylogenetic comparative approaches and suggest ways that they can be avoided in practice. We conclude by promoting a multipronged approach to studying convergence that integrates comparative methods with complementary tests of evolutionary mechanisms and includes ecological and biogeographical perspectives. Carefully employed, the comparative method remains a powerful tool for enriching our understanding of convergence in macroevolution, especially for investigation of why convergence occurs in some settings but not others.


Asunto(s)
Evolución Biológica , Fósiles , Filogenia , Biodiversidad
14.
Proc Biol Sci ; 283(1845)2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-28003450

RESUMEN

Phenotypic traits may be linked to speciation in two distinct ways: character values may influence the rate of speciation or diversification in the trait may be associated with speciation events. Traits involved in signal transmission, such as the dewlap of Anolis lizards, are often involved in the speciation process. The dewlap is an important visual signal with roles in species recognition and sexual selection, and dewlaps vary among species in relative size as well as colour and pattern. We compile a dataset of relative dewlap size digitized from photographs of 184 anole species from across the genus' geographical range. We use phylogenetic comparative methods to test two hypotheses: that larger dewlaps are associated with higher speciation rates, and that relative dewlap area diversifies according to a speciational model of evolution. We find no evidence of trait-dependent speciation, indicating that larger signals do not enhance any role the dewlap has in promoting speciation. Instead, we find a signal of mixed speciational and gradual trait evolution, with a particularly strong signal of speciational change in the dewlaps of mainland lineages. This indicates that dewlap size diversifies in association with the speciation process, suggesting that divergent selection may play a role in the macroevolution of this signalling trait.


Asunto(s)
Especiación Genética , Lagartos/anatomía & histología , Cuello/anatomía & histología , Piel/anatomía & histología , Animales , Geografía , Lagartos/clasificación , Fenotipo , Filogenia
15.
Ecol Evol ; 5(16): 3352-63, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26380669

RESUMEN

Assortative mating - correlation between male and female traits - is common within populations and has the potential to promote genetic diversity and in some cases speciation. Despite its importance, few studies have sought to explain variation in the extent of assortativeness across populations. Here, we measure assortative mating based on an ecologically important trait, diet as inferred from stable isotopes, in 16 unmanipulated lake populations of three-spine stickleback. As predicted, we find a tendency toward positive assortment on the littoral-pelagic axis, although the magnitude is consistently weak. These populations vary relatively little in the strength of assortativeness, and what variation occurs is not explained by hypothesized drivers including habitat cosegregation, the potential for disruptive selection, costs to choosiness, and the strength of the relationship between diet and body size. Our results support recent findings that most assortative mating is positive, while suggesting that new approaches may be required to identify the environmental variables that drive the evolution of nonrandom mating within populations.

16.
Methods Ecol Evol ; 6(1): 83-91, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25893087

RESUMEN

Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.

17.
Am Nat ; 184(5): E115-31, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25325753

RESUMEN

The evolution of convergent phenotypes in lineages subject to similar selective pressures is a common feature of adaptive radiation. In geographically replicated radiations, repeated convergence occurs between clades occupying distinct regions or islands. Alternatively, a clade may repeatedly reach the same adaptive peaks in broadscale sympatry, resulting in extensive convergence within a region. Rockfish (Sebastes sp.) have radiated in both the northeast and northwest Pacific, allowing tests of the extent and geographic pattern of convergence in a marine environment. We used a suite of phylogenetically informed methods to test for morphological convergence in rockfish. We examined patterns of faunal similarity using nearest neighbor distances in morphospace and the frequency of morphologically similar yet distantly related species pairs. The extent of convergence both between regions and within the northeast Pacific exceeds the expectation under a Brownian motion null model, although constraints on trait space could account for the similarity. We then used a recently developed method (SURFACE) to identify adaptive peak shifts in Sebastes evolutionary history. We found that the majority of convergent peak shifts occur within the northeast Pacific rather than between regions and that the signal of peak shifts is strongest for traits related to trophic morphology. Pacific rockfish thus demonstrate a tendency toward morphological convergence within one of the two broad geographic regions in which they have diversified.


Asunto(s)
Evolución Biológica , Perciformes/anatomía & histología , Animales , Ambiente , Geografía , Perciformes/genética , Fenotipo , Filogenia
18.
Science ; 341(6143): 292-5, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23869019

RESUMEN

G. G. Simpson, one of the chief architects of evolutionary biology's modern synthesis, proposed that diversification occurs on a macroevolutionary adaptive landscape, but landscape models are seldom used to study adaptive divergence in large radiations. We show that for Caribbean Anolis lizards, diversification on similar Simpsonian landscapes leads to striking convergence of entire faunas on four islands. Parallel radiations unfolding at large temporal scales shed light on the process of adaptive diversification, indicating that the adaptive landscape may give rise to predictable evolutionary patterns in nature, that adaptive peaks may be stable over macroevolutionary time, and that available geographic area influences the ability of lineages to discover new adaptive peaks.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Lagartos/clasificación , Lagartos/genética , Animales , Islas , Filogenia , Selección Genética
19.
Evolution ; 66(6): 1819-32, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22671549

RESUMEN

Intraguild predation--competition and predation by the same antagonist--is widespread, but its evolutionary consequences are unknown. Intraguild prey may evolve antipredator defenses, superior competitive ability on shared resources, or the ability to use an alternative resource, any of which may alter the structure of the food web. We tested for evolutionary responses by threespine stickleback to a benthic intraguild predator, prickly sculpin. We used a comparative morphometric analysis to show that stickleback sympatric with sculpin are more armored and have more limnetic-like body shapes than allopatric stickleback. To test the ecological implications of this shift, we conducted a mesocosm experiment that varied sculpin presence and stickleback population of origin (from one sympatric and one allopatric lake). Predation by sculpin greatly increased the mortality of allopatric stickleback. In contrast, sculpin presence did not affect the mortality of sympatric stickleback, although they did have lower growth rates suggesting increased nonpredatory effects of sculpin. Consistent with their morphology, sympatric stickleback included more pelagic prey in their diets, leading to depletion of zooplankton in the mesocosms. These findings suggest that intraguild prey evolution has altered food web structure by reducing both predation by the intraguild predator and diet overlap between species.


Asunto(s)
Evolución Biológica , Conducta Predatoria , Smegmamorpha/fisiología , Animales , Smegmamorpha/anatomía & histología , Smegmamorpha/genética , Smegmamorpha/crecimiento & desarrollo
20.
PLoS One ; 6(6): e20782, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21687670

RESUMEN

It has long been known that intraspecific variation impacts evolutionary processes, but only recently have its potential ecological effects received much attention. Theoretical models predict that genetic or phenotypic variance within species can alter interspecific interactions, and experiments have shown that genotypic diversity in clonal species can impact a wide range of ecological processes. To extend these studies to quantitative trait variation within populations, we experimentally manipulated the variance in body size of threespine stickleback in enclosures in a natural lake environment. We found that body size of stickleback in the lake is correlated with prey size and (to a lesser extent) composition, and that stickleback can exert top-down control on their benthic prey in enclosures. However, a six-fold contrast in body size variance had no effect on the degree of diet variation among individuals, or on the abundance or composition of benthic or pelagic prey. Interestingly, post-hoc analyses revealed suggestive correlations between the degree of diet variation and the strength of top-down control by stickleback. Our negative results indicate that, unless the correlation between morphology and diet is very strong, ecological variation among individuals may be largely decoupled from morphological variance. Consequently we should be cautious in our interpretation both of theoretical models that assume perfect correlations between morphology and diet, and of empirical studies that use morphological variation as a proxy for resource use diversity.


Asunto(s)
Tamaño Corporal , Dieta/veterinaria , Conducta Predatoria/fisiología , Smegmamorpha/anatomía & histología , Smegmamorpha/fisiología , Animales , Biota , Invertebrados , Especificidad de la Especie , Zooplancton
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA