Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258548

RESUMEN

HIV-1 integration favors nuclear speckle (NS)-proximal chromatin and viral infection induces the formation of capsid-dependent CPSF6 condensates that colocalize with nuclear speckles (NSs). Although CPSF6 displays liquid-liquid phase separation (LLPS) activity in vitro, the contributions of its different intrinsically disordered regions, which includes a central prion-like domain (PrLD) with capsid binding FG motif and C-terminal mixed-charge domain (MCD), to LLPS activity and to HIV-1 infection remain unclear. Herein, we determined that the PrLD and MCD both contribute to CPSF6 LLPS activity in vitro. Akin to FG mutant CPSF6, infection of cells expressing MCD-deleted CPSF6 uncharacteristically arrested at the nuclear rim. While heterologous MCDs effectively substituted for CPSF6 MCD function during HIV-1 infection, Arg-Ser domains from related SR proteins were largely ineffective. While MCD-deleted and wildtype CPSF6 proteins displayed similar capsid binding affinities, the MCD imparted LLPS-dependent higher-order binding and co-aggregation with capsids in vitro and in cellulo. NS depletion reduced CPSF6 puncta formation without significantly affecting integration into NS-proximal chromatin, and appending the MCD onto a heterologous capsid binding protein partially restored virus nuclear penetration and integration targeting in CPSF6 knockout cells. We conclude that MCD-dependent CPSF6 condensation with capsids underlies post-nuclear incursion for viral DNA integration and HIV-1 pathogenesis.

2.
bioRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38645162

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) capsid, which is the target of the antiviral lenacapavir, protects the viral genome and binds multiple host proteins to influence intracellular trafficking, nuclear import, and integration. Previously, we showed that capsid binding to cleavage and polyadenylation specificity factor 6 (CPSF6) in the cytoplasm is competitively inhibited by cyclophilin A (CypA) binding and regulates capsid trafficking, nuclear import, and infection. Here we determined that a capsid mutant with increased CypA binding affinity had significantly reduced nuclear entry and mislocalized integration. However, disruption of CypA binding to the mutant capsid restored nuclear entry, integration, and infection in a CPSF6-dependent manner. Furthermore, relocalization of CypA expression from the cell cytoplasm to the nucleus failed to restore mutant HIV-1 infection. Our results clarify that sequential binding of CypA and CPSF6 to HIV-1 capsid is required for optimal nuclear entry and integration targeting, informing antiretroviral therapies that contain lenacapavir.

3.
Viruses ; 13(11)2021 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-34835043

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) capsid and its disassembly, or capsid uncoating, has remained an active area of study over the past several decades. Our understanding of the HIV-1 capsid as solely a protective shell has since shifted with discoveries linking it to other complex replication events. The interplay of the HIV-1 capsid with reverse transcription, nuclear import, and integration has led to an expansion of knowledge of capsid functionality. Coincident with advances in microscopy, cell, and biochemistry assays, several models of capsid disassembly have been proposed, in which it occurs in either the cytoplasmic, nuclear envelope, or nuclear regions of the cell. Here, we discuss how the understanding of the HIV-1 capsid has evolved and the key methods that made these discoveries possible.


Asunto(s)
Cápside/fisiología , VIH-1/fisiología , Desencapsidación Viral , Transporte Activo de Núcleo Celular , Cápside/química , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virología , VIH-1/genética , VIH-1/metabolismo , Humanos , Microscopía , Transcripción Reversa , Integración Viral , Replicación Viral , Factores de Escisión y Poliadenilación de ARNm/metabolismo
4.
Viruses ; 13(8)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34452469

RESUMEN

Capsid uncoating is at the crossroads of early steps in HIV-1 replication. In recent years, the development of novel assays has expanded how HIV-1 uncoating can be studied. In the in situ uncoating assay, dual fluorescently labelled virus allows for the identification of fused viral cores. Antibody staining then detects the amount of capsid associated with each viral core at different times post-infection. Following fixed cell imaging, manual counting can be used to assess the fusion state and capsid signal for each viral core, but this method can introduce bias with increased time of analysis. To address these limitations, we developed the Overlap Intensity macro in ImageJ. This macro automates the detection of viral cores and quantification of overlapping fusion and capsid signals. We demonstrated the high accuracy of the macro by comparing core detection to manual methods. Analysis of an in situ uncoating assay further verified the macro by detecting progressive uncoating as expected. Therefore, this macro improves the accessibility of the in situ uncoating assay by replacing time-consuming manual methods or the need for expensive data analysis software. Beyond the described assay, the Overlap Intensity macro includes adjustable settings for use in other methods requiring quantification of overlapping fluorescent signals.


Asunto(s)
VIH-1/fisiología , VIH-1/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos , Desencapsidación Viral , Cápside/ultraestructura , Células HEK293 , Humanos , Microscopía Fluorescente/métodos , Replicación Viral
5.
Virol J ; 17(1): 31, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32143686

RESUMEN

BACKGROUND: After viral fusion with the cell membrane, the conical capsid of HIV-1 disassembles by a process called uncoating. Previously we have utilized the CsA washout assay, in which TRIM-CypA mediated restriction of viral replication is used to detect the state of the viral capsid, to study the kinetics of HIV-1 uncoating in owl monkey kidney (OMK) and HeLa cells. Here we have extended this analysis to the human microglial cell lines CHME3 and C20 to characterize uncoating in a cell type that is a natural target of HIV infection. METHODS: The CsA washout was used to characterize uncoating of wildtype and capsid mutant viruses in CHME3 and C20 cells. Viral fusion assays and nevirapine addition assays were performed to relate the kinetics of viral fusion and reverse transcription to uncoating. RESULTS: We found that uncoating initiated within the first hour after viral fusion and was facilitated by reverse transcription in CHME3 and C20 cells. The capsid mutation A92E did not significantly alter uncoating kinetics. Viruses with capsid mutations N74D and E45A decreased the rate of uncoating in CHME3 cells, but did not alter reverse transcription. Interestingly, the second site suppressor capsid mutation R132T was able to rescue the uncoating kinetics of the E45A mutation, despite having a hyperstable capsid. CONCLUSIONS: These results are most similar to previously observed characteristics of uncoating in HeLa cells and support the model in which uncoating is initiated by early steps of reverse transcription in the cytoplasm. A comparison of the uncoating kinetics of CA mutant viruses in OMK and CHME3 cells reveals the importance of cellular factors in the process of uncoating. The E45A/R132T mutant virus specifically suggests that disrupted interactions with cellular factors, rather than capsid stability, is responsible for the delayed uncoating kinetics seen in E45A mutant virus. Future studies aimed at identifying these factors will be important for understanding the process of uncoating and the development of interventions to disrupt this process.


Asunto(s)
VIH-1/fisiología , Microglía/virología , Desencapsidación Viral , Animales , Cápside/metabolismo , Proteínas de la Cápside/genética , Línea Celular , VIH-1/genética , Humanos , Cinética , Mutación , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA