Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Matrix Biol ; 111: 307-328, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35878760

RESUMEN

Thrombospondin-1 (TSP-1) is a matricellular protein with a multitude of functions in the pericellular and extracellular environment. We report a novel pathway for the regulation of extracellular TSP-1, governed by the endocytic collagen receptor, uPARAP (urokinase plasminogen activator receptor-associated protein; MRC2 gene product, also designated Endo180, CD280). First, using a novel proteomic approach for unbiased identification of ligands for endocytosis, we identify TSP-1 as a candidate ligand for specific uptake by uPARAP. We then show that uPARAP can efficiently internalize TSP-1 for lysosomal degradation, that this capability is not shared by other, closely related endocytic receptors and that uPARAP serves to regulate the extracellular levels of TSP-1 in vitro. Using wild type and uPARAP null mice, we also demonstrate uPARAP-mediated endocytosis of TSP-1 in dermal fibroblasts in vivo. Unlike other uPARAP ligands, the interaction with TSP-1 is sensitive to heparin and the responsible molecular motifs in uPARAP are overlapping, but not identical with those governing the interaction with collagens. Finally, we show that uPARAP can also mediate the endocytosis of TSP-2, a thrombospondin closely related to TSP-1, but not the more distantly related members of the same protein family, TSP-3, -4 and -5. These findings indicate that the role of uPARAP in ECM remodeling is not limited to the uptake of collagen for degradation but also includes an orchestrator function in the regulation of thrombospondins with numerous downstream effects. This is likely to be an important factor in the physiological and pathological roles of uPARAP in bone biology, fibrosis and cancer. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD031272.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Trombospondina 1/metabolismo , Animales , Colágeno/metabolismo , Endocitosis , Ligandos , Ratones , Ratones Noqueados , Proteómica , Trombospondina 1/genética
2.
Sci Rep ; 10(1): 19138, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154487

RESUMEN

The membrane-anchored matrix metalloprotease MT1-MMP is a potent collagenolytic enzyme with a well-established role in extracellular matrix turnover and cellular invasion into collagen-rich tissues. MT1-MMP is highly expressed in various types of cancer and has been demonstrated to be directly involved in several stages of tumor progression, including primary tumor growth, angiogenesis, invasion and metastasis. Osteosarcoma is the most common type of primary bone cancer. This disease is characterized by invasive tumor growth, leading to extensive bone destruction, and metastasis to the lungs. The tumor cells in human osteosarcoma display a strong expression of MT1-MMP, but the role of MT1-MMP in osteosarcoma progression is currently unknown. In this study, we investigated the role of MT1-MMP during various stages of osteosarcoma development. We utilized an optimized orthotopic murine osteosarcoma model and human osteosarcoma cells in which the MT1-MMP gene was knocked out using CRISPR/Cas9. We observed a strong expression of MT1-MMP in wildtype cells of both primary tumors and lung metastases, but, surprisingly, MT1-MMP deficiency did not affect primary tumor growth, bone degradation or the formation and growth of lung metastases. We therefore propose that, unlike findings reported in other cancers, tumor-expressed MT1-MMP is dispensable for all stages of osteosarcoma progression.


Asunto(s)
Neoplasias Óseas/genética , Huesos/patología , Proliferación Celular/genética , Neoplasias Pulmonares/genética , Metaloproteinasa 14 de la Matriz/genética , Osteosarcoma/genética , Animales , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Huesos/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Osteosarcoma/metabolismo , Osteosarcoma/secundario
3.
Oncotarget ; 8(27): 44605-44624, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28574834

RESUMEN

A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non-epithelial cancers, notably including sarcomas, glioblastomas and subsets of acute myeloid leukemia. In contrast, in healthy adult individuals, expression is restricted to minor subsets of mesenchymal cells. Functionally, uPARAP/Endo180 is a rapidly recycling endocytic receptor that delivers its cargo directly into the endosomal-lysosomal system, thus opening a potential route of entry into receptor-positive cells. This combination of specific expression and endocytic function appears well suited for targeting of uPARAP/Endo180-positive cancers by antibody-drug conjugate (ADC) mediated drug delivery. Therefore, we utilized a specific monoclonal antibody against uPARAP/Endo180, raised through immunization of a uPARAP/Endo180 knock-out mouse, which reacts with both the human and the murine receptor, to construct a uPARAP-directed ADC. This antibody was coupled to the highly toxic dolastatin derivative, monomethyl auristatin E, via a cathepsin-labile valine-citrulline linker. With this ADC, we show strong and receptor-dependent cytotoxicity in vitro in uPARAP/Endo180-positive cancer cell lines of sarcoma, glioblastoma and leukemic origin. Furthermore, we demonstrate the potency of the ADC in vivo in a xenograft mouse model with human uPARAP/Endo180-positive leukemic cells, obtaining a complete cure of all tested mice following intravenous ADC treatment with no sign of adverse effects. Our study identifies uPARAP/Endo180 as a promising target for novel therapy against several highly malignant cancer types.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Inmunoconjugados/farmacología , Lectinas de Unión a Manosa/antagonistas & inhibidores , Glicoproteínas de Membrana/antagonistas & inhibidores , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores Mitogénicos/antagonistas & inhibidores , Animales , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Supervivencia Celular , Modelos Animales de Enfermedad , Endocitosis , Expresión Génica , Humanos , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Leucemia/mortalidad , Leucemia/patología , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Terapia Molecular Dirigida , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Mitogénicos/genética , Receptores Mitogénicos/metabolismo , Sarcoma/tratamiento farmacológico , Sarcoma/metabolismo , Sarcoma/mortalidad , Sarcoma/patología , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Clin Invest ; 126(3): 1109-13, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26901817

RESUMEN

It has been reported that endogenous retroviruses can contaminate human cell lines that have been passaged as xenotransplants in immunocompromised mice. We previously developed and described 2 human pancreatic ß cell lines (EndoC-ßH1 and EndoC-ßH2) that were generated in this way. Here, we have shown that B10 xenotropic virus 1 (Bxv1), a xenotropic endogenous murine leukemia virus (MuLV), is present in these 2 recently described cell lines. We determined that Bxv1 was also present in SCID mice that were used for in vivo propagation of EndoC-ßH1/2 cells, suggesting that contamination occurred during xenotransplantation. EndoC-ßH1/2 cells released Bxv1 particles that propagated to human 293T and Mus dunni cells. Mobilization assays demonstrated that Bxv1 transcomplements defective MuLV-based retrovectors. In contrast, common rodent ß cell lines, rat INS-1E and RIN-5F cells and mouse MIN6 and ßTC3 cells, displayed either no or extremely weak xenotropic helper activity toward MuLV-based retrovectors, although xenotropic retrovirus sequences and transcripts were detected in both mouse cell lines. Bxv1 propagation from EndoC-ßH1/2 to 293T cells occurred only under optimized conditions and was overall poorly efficient. Thus, although our data imply that MuLV-based retrovectors should be cautiously used in EndoC-ßH1/2 cells, our results indicate that an involuntary propagation of Bxv1 from these cells can be easily avoided with good laboratory practices.


Asunto(s)
Células Secretoras de Insulina/virología , Virus Relacionado con el Virus Xenotrópico de la Leucemia Murina/genética , Animales , Línea Celular , Expresión Génica , Genoma Viral , Xenoinjertos , Humanos , Ratones , Ratones SCID , Ratas , Proteínas del Envoltorio Viral/metabolismo , Integración Viral , Replicación Viral , Virus Relacionado con el Virus Xenotrópico de la Leucemia Murina/metabolismo
5.
J Pathol ; 238(1): 120-33, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26466547

RESUMEN

In osteosarcoma, a primary mesenchymal bone cancer occurring predominantly in younger patients, invasive tumour growth leads to extensive bone destruction. This process is insufficiently understood, cannot be efficiently counteracted and calls for novel means of treatment. The endocytic collagen receptor, uPARAP/Endo180, is expressed on various mesenchymal cell types and is involved in bone matrix turnover during normal bone growth. Human osteosarcoma specimens showed strong expression of this receptor on tumour cells, along with the collagenolytic metalloprotease, MT1-MMP. In advanced tumours with ongoing bone degeneration, sarcoma cells positive for these proteins formed a contiguous layer aligned with the degradation zones. Remarkably, osteoclasts were scarce or absent from these regions and quantitative analysis revealed that this scarcity marked a strong contrast between osteosarcoma and bone metastases of carcinoma origin. This opened the possibility that sarcoma cells might directly mediate bone degeneration. To examine this question, we utilized a syngeneic, osteolytic bone tumour model with transplanted NCTC-2472 sarcoma cells in mice. When analysed in vitro, these cells were capable of degrading the protein component of surface-labelled bone slices in a process dependent on MMP activity and uPARAP/Endo180. Systemic treatment of the sarcoma-inoculated mice with a mouse monoclonal antibody that blocks murine uPARAP/Endo180 led to a strong reduction of bone destruction. Our findings identify sarcoma cell-resident uPARAP/Endo180 as a central player in the bone degeneration of advanced tumours, possibly following an osteoclast-mediated attack on bone in the early tumour stage. This points to uPARAP/Endo180 as a promising therapeutic target in osteosarcoma, with particular prospects for improved neoadjuvant therapy.


Asunto(s)
Neoplasias Óseas/patología , Osteólisis/metabolismo , Osteosarcoma/patología , Receptores Mitogénicos/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Invasividad Neoplásica , Osteoclastos/patología , Osteólisis/etiología , Osteólisis/patología
6.
J Neurochem ; 129(6): 966-79, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24611815

RESUMEN

Restoration of correct neural activity following central nervous system (CNS) damage requires the replacement of degenerated axons with newly outgrowing, functional axons. Unfortunately, spontaneous regeneration is largely lacking in the adult mammalian CNS. In order to establish successful regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model, we were able to show that broad-spectrum MMP inhibition reduces axon outgrowth of mouse retinal ganglion cells (RGCs), implicating MMPs as beneficial factors in axonal regeneration. Additional studies, using more specific MMP inhibitors and MMP-deficient mice, disclosed that both MMP-2 and MT1-MMP, but not MMP-9, are involved in this process. Furthermore, administration of a novel antibody to MT1-MMP that selectively blocks pro-MMP-2 activation revealed a functional co-involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP-2 and MT1-MMP in RGC axons and glial cells. Finally, results from combined inhibition of MMP-2 and ß1-integrin were suggestive for a functional interaction between these molecules. Overall, our data indicate MMP-2 and MT1-MMP as promising axonal outgrowth-promoting molecules. Axonal regeneration in the central nervous system is lacking in adult mammals, thereby impeding recovery from injury to the nervous system. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Inhibition of specific MMPs reduced neurite outgrowth from mouse retinal explants. Our data indicate MMP-2 and MT1-MMP as promising axonal outgrowth-promoting molecules and show a possible link between MMP-2 and ß1-integrin in axon outgrowth.


Asunto(s)
Axones/fisiología , Metaloproteinasa 2 de la Matriz/fisiología , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Metaloproteinasas de la Matriz Asociadas a la Membrana/fisiología , Células Ganglionares de la Retina/fisiología , Animales , Anticuerpos Bloqueadores/farmacología , Axones/efectos de los fármacos , Gelatinasas/farmacología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Integrina beta1/farmacología , Integrina beta1/fisiología , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/enzimología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
7.
PLoS One ; 8(8): e71261, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940733

RESUMEN

A well-coordinated remodeling of uncalcified collagen matrices is a pre-requisite for bone development and homeostasis. Collagen turnover proceeds through different pathways, either involving extracellular reactions exclusively, or being dependent on endocytic processes. Extracellular collagen degradation requires the action of secreted or membrane attached collagenolytic proteases, whereas the alternative collagen degradation pathway proceeds intracellularly after receptor-mediated uptake and delivery to the lysosomes. In this study we have examined the functional interplay between the extracellular collagenase, MMP-2, and the endocytic collagen receptor, uPARAP, by generating mice with combined deficiency of both components. In both uPARAP-deficient and MMP-2-deficient adult mice the length of the tibia and femur was decreased, along with a reduced bone mineral density and trabecular bone quality. An additional decrease in bone length was observed when combining the two deficiencies, pointing to both components being important for the remodeling processes in long bone growth. In agreement with results found by others, a different effect of MMP-2 deficiency was observed in the distinct bone structures of the calvaria. These membranous bones were found to be thickened in MMP-2-deficient mice, an effect likely to be related to an accompanying defect in the canalicular system. Surprisingly, both of the latter defects in MMP-2-deficient mice were counteracted by concurrent uPARAP deficiency, demonstrating that the collagen receptor does not support the same matrix remodeling processes as the MMP in the growth of the skull. We conclude that both uPARAP and MMP-2 take part in matrix turnover processes important for bone growth. However, in some physiological situations, these two components do not support the same step in the growth process.


Asunto(s)
Huesos/fisiología , Homeostasis/genética , Metaloproteinasa 2 de la Matriz/fisiología , Glicoproteínas de Membrana/fisiología , Receptores de Superficie Celular/fisiología , Animales , Densidad Ósea/genética , Femenino , Crecimiento y Desarrollo/genética , Masculino , Ratones , Ratones Noqueados , Tamaño de los Órganos/genética , Osteogénesis/genética , Cráneo/crecimiento & desarrollo
8.
J Biol Chem ; 288(15): 10195-204, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23413031

RESUMEN

The group of matrix metalloproteases (MMPs) is responsible for multiple processes of extracellular matrix remodeling in the healthy body but also for matrix and tissue destruction during cancer invasion and metastasis. The understanding of the contributions from each individual MMP, both in healthy and pathological events, has been complicated by the lack of specific inhibitors and the fact that some of the potent MMPs are multifunctional enzymes. These factors have also hampered the setup of therapeutic strategies targeting MMP activity. A tempting target is the membrane-associated MT1-MMP, which has well-documented importance in matrix degradation but which takes part in more than one pathway in this regard. In this report, we describe the selective targeting of a single function of this enzyme by means of a specific monoclonal antibody against MT1-MMP, raised in an MT1-MMP knock-out mouse. The antibody blocks the enzyme ability to activate proMMP-2 without interfering with the collagenolytic function or the general proteolytic activity of MT1-MMP. Using this antibody, we have shown that the MT1-MMP-catalyzed activation of proMMP-2 is involved in the outgrowth of cultured lymphatic endothelial cells in a collagen matrix in vitro, as well as in lymphatic vessel sprouting assayed ex vivo. This is the first example of the complete inactivation of a single function of a multifunctional MMP and the use of this strategy to pursue its role.


Asunto(s)
Matriz Extracelular/metabolismo , Linfangiogénesis/fisiología , Metaloproteinasa 14 de la Matriz/metabolismo , Animales , Anticuerpos Monoclonales de Origen Murino/química , Células CHO , Cricetinae , Activación Enzimática/genética , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/patología , Gelatinasas/genética , Gelatinasas/metabolismo , Humanos , Metaloproteinasa 14 de la Matriz/genética , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo
9.
Front Pharmacol ; 3: 122, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22754528

RESUMEN

Identification of targets for cancer therapy requires the understanding of the in vivo roles of proteins, which can be derived from studies using gene-targeted mice. An alternative strategy is the administration of inhibitory monoclonal antibodies (mAbs), causing acute disruption of the target protein function(s). This approach has the advantage of being a model for therapeutic targeting. mAbs for use in mouse models can be obtained through immunization of gene-deficient mice with the autologous protein. Such mAbs react with both species-specific epitopes and epitopes conserved between species. mAbs against proteins involved in extracellular proteolysis, including plasminogen activators urokinase plasminogen activator (uPA), tissue-type plasminogen activator (tPA), their inhibitor PAI-1, the uPA receptor (uPAR), two matrix metalloproteinases (MMP9 and MMP14), as well as the collagen internalization receptor uPARAP, have been developed. The inhibitory mAbs against uPA and uPAR block plasminogen activation and thereby hepatic fibrinolysis in vivo. Wound healing, another plasmin-dependent process, is delayed by an inhibitory mAb against uPA in the adult mouse. Thromboembolism can be inhibited by anti-PAI-1 mAbs in vivo. In conclusion, function-blocking mAbs are well-suited for targeted therapy in mouse models of different diseases, including cancer.

10.
J Pathol ; 227(1): 94-105, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22294280

RESUMEN

Fibrosis of the liver and its end-stage, cirrhosis, represent major health problems worldwide. In these fibrotic conditions, activated fibroblasts and hepatic stellate cells display a net deposition of collagen. This collagen deposition is a major factor leading to liver dysfunction, thus making it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional importance of this collagen receptor in vivo, liver fibrosis was induced in uPARAP/Endo180-deficient mice and littermate wild-type mice by chronic CCl(4) administration. A strong up-regulation of uPARAP/Endo180 was observed in wild-type mice, and a quantitative comparison of collagen deposits in the two groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading components. This function of uPARAP/Endo180 defines a novel role of intracellular collagen turnover in fibrosis protection.


Asunto(s)
Colágeno/metabolismo , Endocitosis/fisiología , Cirrosis Hepática Experimental/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Anticuerpos Bloqueadores/farmacología , Línea Celular , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/prevención & control , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Endogámicos , Ratones Noqueados , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Regulación hacia Arriba
11.
J Biol Chem ; 286(37): 32736-48, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21768090

RESUMEN

Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation.


Asunto(s)
Colágeno Tipo IV/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Línea Celular Tumoral , Colágeno Tipo IV/química , Colágeno Tipo IV/genética , Matriz Extracelular/química , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Glicosilación , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Receptor de Manosa , Lectinas de Unión a Manosa/química , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Ratones , Ratones Mutantes , Estructura Terciaria de Proteína , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
J Biol Chem ; 286(30): 26996-7010, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21652704

RESUMEN

The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include ß1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down-regulates the receptor protein level on treated cells, to examine the role of uPARAP/Endo180 as a mediator of collagen internalization by a wide range of cultured cell types. With the exception of macrophages, all cells that proved capable of efficient collagen internalization were of mesenchymal origin and all of these utilized uPARAP/Endo180 for their collagen uptake process. Macrophages internalized collagen in a process mediated by the mannose receptor, a protein belonging to the same protein family as uPARAP/Endo180. ß1-Integrins were found not to be involved in the endocytosis of soluble collagen, irrespectively of whether this was mediated by uPARAP/Endo180 or the mannose receptor. This further distinguishes these pathways from the phagocytic uptake of particulate collagen.


Asunto(s)
Colágeno/metabolismo , Fibroblastos/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Lectinas de Unión a Manosa/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Anticuerpos Monoclonales de Origen Murino/farmacología , Células CACO-2 , Colágeno/genética , Células HEK293 , Células HeLa , Humanos , Receptor de Manosa , Lectinas de Unión a Manosa/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Células 3T3 NIH , Fagocitosis , Receptores de Superficie Celular/genética
13.
Cancer Res ; 70(20): 7851-61, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20876804

RESUMEN

Aberrant expression and polymorphism of fibroblast growth factor receptor 4 (FGFR4) has been linked to tumor progression and anticancer drug resistance. We describe here a novel mechanism of tumor progression by matrix degradation involving epithelial-to-mesenchymal transition in response to membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14) induction at the edge of tumors expressing the FGFR4-R388 risk variant. Both FGFR4 and MT1-MMP were upregulated in tissue biopsies from several human cancer types including breast adenocarcinomas, where they were partially coexpressed at the tumor/stroma border and tumor invasion front. The strongest overall coexpression was found in prostate carcinoma. Studies with cultured prostate carcinoma cell lines showed that the FGFR4-R388 variant, which has previously been associated with poor cancer prognosis, increased MT1-MMP-dependent collagen invasion. In this experimental model, knockdown of FGFR4-R388 or MT1-MMP by RNA interference blocked tumor cell invasion and growth in collagen. This was coupled with impaired phosphorylation of FGFR substrate 2 and Src, upregulation of E-cadherin, and suppression of cadherin-11 and N-cadherin. These in vitro results were substantiated by reduced MT1-MMP content and in vivo growth of prostate carcinoma cells after the FGFR4-R388 gene silencing. In contrast, knockdown of the alternative FGFR4-G388 allele enhanced MT1-MMP and invasive tumor cell growth in vivo and within three-dimensional collagen. These results will help to explain the reported association of the FGFR4-R388 variant with the progression and poor prognosis of certain types of tumors.


Asunto(s)
Adenocarcinoma/patología , Neoplasias de la Mama/patología , Matriz Extracelular/patología , Factores de Crecimiento de Fibroblastos/fisiología , Neoplasias/patología , Neoplasias de la Próstata/patología , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Adenocarcinoma/genética , Adenocarcinoma/fisiopatología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , División Celular/genética , ADN Complementario/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Homeostasis , Humanos , Ganglios Linfáticos/patología , Masculino , Ratones , Ratones SCID , Invasividad Neoplásica , Reacción en Cadena de la Polimerasa , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/fisiopatología , ARN Interferente Pequeño/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/fisiología , Transducción de Señal
14.
J Bone Miner Res ; 24(11): 1905-16, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19419317

RESUMEN

Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic activity associated with the membrane-type 1 matrix metalloproteinase (MT1-MMP) results in disrupted skeletal development and growth in both cartilage and bone, where MT1-MMP is required for pericellular collagen dissolution. We show here that reconstitution of MT1-MMP activity in the type II collagen-expressing cells of the skeleton rescues not only diminished chondrocyte proliferation, but surprisingly, also results in amelioration of the severe skeletal dysplasia associated with MT1-MMP deficiency through enhanced bone formation. Consistent with this increased bone formation, type II collagen was identified in bone cells and skeletal stem/progenitor cells of wildtype mice. Moreover, bone marrow stromal cells isolated from mice expressing MT1-MMP under the control of the type II collagen promoter in an MT1-MMP-deficient background showed enhanced bone formation in vitro and in vivo compared with cells derived from nontransgenic MT1-MMP-deficient littermates. These observations show that type II collagen is not stringently confined to the chondrocyte but is expressed in skeletal stem/progenitor cells (able to regenerate bone, cartilage, myelosupportive stroma, marrow adipocytes) and in the chondrogenic and osteogenic lineage progeny where collagenolytic activity is a requisite for proper cell and tissue function.


Asunto(s)
Huesos/citología , Cartílago/citología , Linaje de la Célula , Colágeno Tipo II/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Células Madre/citología , Células Madre/enzimología , Adipocitos/citología , Animales , Peso Corporal , Médula Ósea/enzimología , Huesos/anatomía & histología , Huesos/enzimología , Cartílago/enzimología , Proliferación Celular , Condrocitos/citología , Condrocitos/enzimología , Metaloproteinasa 14 de la Matriz/deficiencia , Metaloproteinasa 14 de la Matriz/genética , Ratones , Especificidad de Órganos , Osteogénesis , Ratas , Análisis de Supervivencia , Transgenes/genética , Aumento de Peso
15.
Front Biosci (Landmark Ed) ; 14(6): 2103-14, 2009 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-19273187

RESUMEN

The uPAR-associated protein (uPARAP/Endo180), a type-1 membrane protein belonging to the mannose receptor family, is an endocytic receptor for collagen. Through this endocytic function, the protein takes part in a previously unrecognized mechanism of collagen turnover. uPARAP/Endo180 can bind and internalize both intact and partially degraded collagens. In some turnover pathways, the function of the receptor probably involves an interplay with certain matrix-degrading proteases whereas, in other physiological processes, redundant mechanisms involving both endocytic and pericellular collagenolysis seem to operate in parallel. On certain cell types, uPARAP/Endo180 occurs in a complex with the urokinase plasminogen activator receptor (uPAR) where it seems to fulfill other functions in addition to collagenolysis. uPARAP/Endo180 is expressed on various mesenchymal cells, including subpopulations of fibroblasts, osteoblasts and chondrocytes, generally in conjunction with matrix turnover and collagenolysis. A striking expression is found in developing bone where the collagenolytic function of uPARAP/Endo180 is one of the rate-limiting steps in growth. In murine breast tumors, the endocytic function of the receptor in collagen breakdown seems to be involved in invasive tumor growth.


Asunto(s)
Lectinas de Unión a Manosa/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Mitogénicos/metabolismo , Humanos , Lectinas de Unión a Manosa/química , Glicoproteínas de Membrana/química , Conformación Proteica , Receptores de Superficie Celular/química , Receptores Mitogénicos/química
16.
J Cell Biol ; 184(3): 399-408, 2009 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-19188491

RESUMEN

Epithelial-mesenchymal transition (EMT) is required for mesodermal differentiation during development. The zinc-finger transcription factor, Snail1, can trigger EMT and is sufficient to transcriptionally reprogram epithelial cells toward a mesenchymal phenotype during neoplasia and fibrosis. Whether Snail1 also regulates the behavior of terminally differentiated mesenchymal cells remains unexplored. Using a Snai1 conditional knockout model, we now identify Snail1 as a regulator of normal mesenchymal cell function. Snail1 expression in normal fibroblasts can be induced by agonists known to promote proliferation and invasion in vivo. When challenged within a tissue-like, three-dimensional extracellular matrix, Snail1-deficient fibroblasts exhibit global alterations in gene expression, which include defects in membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invasive activity. Snail1-deficient fibroblasts explanted atop the live chick chorioallantoic membrane lack tissue-invasive potential and fail to induce angiogenesis. These findings establish key functions for the EMT regulator Snail1 after terminal differentiation of mesenchymal cells.


Asunto(s)
Diferenciación Celular/fisiología , Expresión Génica , Mesodermo/citología , Isoformas de Proteínas/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Epiteliales/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Isoformas de Proteínas/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética
17.
Biol Chem ; 389(7): 943-53, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18627313

RESUMEN

The secreted gelatinase matrix metalloprotease-2 (MMP-2) and the membrane-anchored matrix metalloprotease MT1-MMP (MMP-14), are central players in pericellular proteolysis in extracellular matrix degradation. In addition to possessing a direct collagenolytic and gelatinolytic activity, these enzymes take part in a cascade pathway in which MT1-MMP activates the MMP-2 proenzyme. This reaction occurs in an interplay with the matrix metalloprotease inhibitor, TIMP-2, and the proposed mechanism involves two molecules of MT1-MMP in complex with one TIMP-2 molecule. We provide positive evidence that proMMP-2 activation is governed by dimerization of MT1-MMP on the surface of fibroblasts and fibrosarcoma cells. Even in the absence of transfection and overexpression, dimerization of MT1-MMP markedly stimulated the formation of active MMP-2 products. The effect demonstrated here was brought about by a monoclonal antibody that binds specifically to MT1-MMP as shown by immunofluorescence experiments. The antibody has no effect on the catalytic activity. The effect on proMMP-2 activation involves MT1-MMP dimerization because it requires the divalent monoclonal antibody, with no effect obtained with monovalent Fab fragments. Since only a negligible level of proMMP-2 activation was obtained with MT1-MMP-expressing cells in the absence of dimerization, our results identify the dimerization event as a critical level of proteolytic cascade regulation.


Asunto(s)
Precursores Enzimáticos/metabolismo , Fibroblastos/metabolismo , Metaloproteinasa 14 de la Matriz/química , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Bovinos , Línea Celular Tumoral , Dimerización , Activación Enzimática , Hemopexina/metabolismo , Humanos , Inmunización , Metaloproteinasa 14 de la Matriz/inmunología , Ratones , Peso Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
18.
J Biol Chem ; 283(22): 15217-23, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18362146

RESUMEN

The urokinase receptor, urokinase receptor (uPAR), is a glycosylphosphatidylinositol-anchored membrane protein engaged in pericellular proteolysis and cellular adhesion, migration, and modulation of cell morphology. A direct matrix adhesion is mediated through the binding of uPAR to vitronectin, and this event is followed by downstream effects including changes in the cytoskeletal organization. However, it remains unclear whether the adhesion through uPAR-vitronectin is the only event capable of initiating these morphological rearrangements or whether lateral interactions between uPAR and integrins can induce the same response. In this report, we show that both of these triggering mechanisms can be operative and that uPAR-dependent modulation of cell morphology can indeed occur independently of a direct vitronectin binding. Expression of wild-type uPAR on HEK293 cells led to pronounced vitronectin adhesion and cytoskeletal rearrangements, whereas a mutant uPAR, uPAR(W32A) with defective vitronectin binding, failed to induce both phenomena. However, upon saturation of uPAR(W32A) with the protease ligand, pro-uPA, or its receptor-binding domain, the ability to induce cytoskeletal rearrangements was restored, although this did not rescue the uPAR-vitronectin binding and adhesion capability. On the other hand, using other uPAR variants, we could show that uPAR-vitronectin adhesion is indeed capable and sufficient to induce the same morphological rearrangements. This was shown with cells expressing a different single-site mutant, uPAR(Y57A), in the presence of a synthetic uPAR-binding peptide, as well as with wild-type uPAR, which underwent cytoskeletal rearrangements even when cultivated in uPA-deficient serum. Blocking of integrins with an Arg-Gly-Asp-containing peptide counteracted the matrix contacts necessary to initiate the uPAR-dependent cytoskeletal rearrangements, whereas inactivation of the Rac signaling pathway in all cases suppressed the occurrence of the same events.


Asunto(s)
Forma de la Célula/fisiología , Citoesqueleto/metabolismo , Receptores de Superficie Celular/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Vitronectina/metabolismo , Sustitución de Aminoácidos , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Línea Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Forma de la Célula/efectos de los fármacos , Citoesqueleto/genética , Humanos , Integrinas/genética , Integrinas/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Receptores de Superficie Celular/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Activador de Plasminógeno de Tipo Uroquinasa/genética , Vitronectina/genética
19.
J Biol Chem ; 282(37): 27037-27045, 2007 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-17623673

RESUMEN

The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular collagenolysis is not known. In this report, we demonstrate the existence of a new, composite collagen breakdown pathway. Thus, fibroblast-mediated collagen degradation proceeds preferentially as a sequential mechanism in which extracellular collagenolysis is followed by uPARAP/Endo180-mediated endocytosis of large collagen fragments. First, we show that collagen that has been pre-cleaved by a mammalian collagenase is taken up much more efficiently than intact, native collagen by uPARAP/Endo180-positive cells. Second, we demonstrate that this preference is governed by the acquisition of a gelatin-like structure by the collagen, occurring upon collagenase-mediated cleavage under native conditions. Third, we demonstrate that the growth of uPARAP/Endo180-deficient fibroblasts on a native collagen matrix leads to substantial extracellular accumulation of well defined collagen fragments, whereas, wild-type fibroblasts possess the ability to direct an organized and complete degradation sequence comprising both the initial cleavage, the endocytic uptake, and the intracellular breakdown of collagen.


Asunto(s)
Colágeno/metabolismo , Colagenasas/fisiología , Endocitosis , Fibroblastos/fisiología , Glicoproteínas de Membrana/fisiología , Receptores de Superficie Celular/fisiología , Animales , Células Cultivadas , Metaloproteinasa 14 de la Matriz/fisiología , Ratones , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA