Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Primatol ; 83(12): e23338, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34662462

RESUMEN

Species distributions are influenced by processes occurring at multiple spatial scales. It is therefore insufficient to model species distribution at a single geographic scale, as this does not provide the necessary understanding of determining factors. Instead, multiple approaches are needed, each differing in spatial extent, grain, and research objective. Here, we present the first attempt to model continent-wide great ape density distribution. We used site-level estimates of African great ape abundance to (1) identify socioeconomic and environmental factors that drive densities at the continental scale, and (2) predict range-wide great ape density. We collated great ape abundance estimates from 156 sites and defined 134 pseudo-absence sites to represent additional absence locations. The latter were based on locations of unsuitable environmental conditions for great apes, and on existing literature. We compiled seven socioeconomic and environmental covariate layers and fitted a generalized linear model to investigate their influence on great ape abundance. We used an Akaike-weighted average of full and subset models to predict the range-wide density distribution of African great apes for the year 2015. Great ape densities were lowest where there were high Human Footprint and Gross Domestic Product values; the highest predicted densities were in Central Africa, and the lowest in West Africa. Only 10.7% of the total predicted population was found in the International Union for Conservation of Nature Category I and II protected areas. For 16 out of 20 countries, our estimated abundances were largely in line with those from previous studies. For four countries, Central African Republic, Democratic Republic of the Congo, Liberia, and South Sudan, the estimated populations were excessively high. We propose further improvements to the model to overcome survey and predictor data limitations, which would enable a temporally dynamic approach for monitoring great apes across their range based on key indicators.


Asunto(s)
Hominidae , África Central , África Occidental , Animales , República Centroafricana , Recolección de Datos , Gorilla gorilla , Pan troglodytes
2.
Sci Adv ; 4(4): eaar2964, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29707637

RESUMEN

We present a range-wide assessment of sympatric western lowland gorillas Gorilla gorilla gorilla and central chimpanzees Pan troglodytes troglodytes using the largest survey data set ever assembled for these taxa: 59 sites in five countries surveyed between 2003 and 2013, totaling 61,000 person-days of fieldwork. We used spatial modeling to investigate major drivers of great ape distribution and population trends. We predicted density across each taxon's geographic range, allowing us to estimate overall abundance: 361,900 gorillas and 128,700 chimpanzees in Western Equatorial Africa-substantially higher than previous estimates. These two subspecies represent close to 99% of all gorillas and one-third of all chimpanzees. Annual population decline of gorillas was estimated at 2.7%, maintaining them as Critically Endangered on the International Union for Conservation of Nature and Natural Resources (IUCN) Red List. We quantified the threats to each taxon, of which the three greatest were poaching, disease, and habitat degradation. Gorillas and chimpanzees are found at higher densities where forest is intact, wildlife laws are enforced, human influence is low, and disease impacts have been low. Strategic use of the results of these analyses could conserve the majority of gorillas and chimpanzees. With around 80% of both subspecies occurring outside protected areas, their conservation requires reinforcement of anti-poaching efforts both inside and outside protected areas (particularly where habitat quality is high and human impact is low), diligent disease control measures (including training, advocacy, and research into Ebola virus disease), and the preservation of high-quality habitat through integrated land-use planning and implementation of best practices by the extractive and agricultural industries.


Asunto(s)
Armas de Fuego , Gorilla gorilla , Pan troglodytes , Árboles , África , Animales , Geografía , Modelos Teóricos , Densidad de Población , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...