Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 172(3): 1795-1807, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33826767

RESUMEN

High relative humidity (RH) perturbs plant growth, stomatal functioning and abscisic acid (ABA) homeostasis, but the role of ABA in this physiological regulation is equivocal. To determine the role(s) of ABA in plant responses to high RH, wild-type (WT) tomato and barley plants and their respective ABA-deficient mutants flacca and Az34 (which are mutated in the same locus of the ABA biosynthesis pathway) were grown in contrasting RHs (60% and 90%) to measure biomass partitioning, stomatal traits and water relations. Surprisingly, growth RH did not affect foliar ABA levels in either species. While Az34 showed similar stomatal size and density as WT plants, flacca had larger and more abundant stomata. High RH increased stomatal size in tomato, but decreased it in barley, and decreased stomatal density in tomato, but not in barley. Altered stomatal responses in ABA-deficient plants to high RH had little effect on tomato photosynthesis, but Az34 barley showed lower photosynthesis. ABA deficiency decreased relative shoot growth rate (RGRSHOOT ) in both species, yet this was counteracted by high RH increasing leaf water status in tomato, but not in barley. High RH increased RGRSHOOT in flacca, but not in WT tomatoes, while having no effect on RGRSHOOT in barley, but affecting barley net assimilation rate, leaf area ratio (LAR) and specific leaf area in an ABA-dependent manner. ABA-RH interaction affected leaf development in tomato only. Thus, different crop species show variable responses to both high RH and ABA deficiency, making it difficult to generalise on the role of ABA in growth regulation at contrasting RHs.


Asunto(s)
Ácido Abscísico , Estomas de Plantas , Humedad , Hojas de la Planta/genética , Agua
2.
Photochem Photobiol Sci ; 18(2): 387-399, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30480699

RESUMEN

Growth in high relative air humidity (RH, >85%) affects plant morphology and causes diminished response to stomatal closing signals. Many greenhouses are prone to high RH conditions, which may negatively affect production and post-harvest quality. UV radiation induces stomatal closure in several species, and facilitates disease control. We hypothesised that UV exposure may trigger stomatal closure in pea plants (Pisum sativum) grown in high RH, thereby restoring stomatal function. The effects of UV exposure were tested on plants grown in moderate (60%) or high (90%) RH. UV exposure occurred at night, according to a disease control protocol. Lower stomatal conductance rates were found in UV-exposed plants, though UV exposure did not improve the rate of response to closing stimuli or desiccation tolerance. UV-exposed plants showed leaf curling, chlorosis, necrosis, and DNA damage measured by the presence of cyclobutane pyrimidine dimers (CPD), all of which were significantly greater in high RH plants. These plants also had lower total flavonoid content than moderate RH plants, and UV-exposed plants had less than controls. Plants exposed to UV had a higher content of cuticular layer uronic compounds than control plants. However, high RH plants had a higher relative amount of cuticular waxes, but decreased proteins and uronic compounds. Plants grown in high RH had reduced foliar antioxidant power compared to moderate RH. These results indicate that high RH plants were more susceptible to UV-induced damage than moderate RH plants due to reduced flavonoid content and oxidative stress defence.


Asunto(s)
Aire , Antioxidantes/metabolismo , Daño del ADN , Flavonoides/metabolismo , Humedad , Pisum sativum/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Pisum sativum/genética , Pisum sativum/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...