Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cells Transl Med ; 13(8): 711-723, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38895873

RESUMEN

Lung and brain injury that occurs during the perinatal period leads to lifelong disability and is often driven and/or exacerbated by inflammation. Human amniotic epithelial cells (hAEC), which demonstrate immunomodulatory, anti-fibrotic, and regenerative capabilities, are being explored as a therapeutic candidate for perinatal injury. However, limitations regarding scalable manufacturing, storage, transport, and dose-related toxicity have impeded clinical translation. Isolated therapeutic extracellular vesicles (EVs) from stem and stem-like cells are thought to be key paracrine mediators of therapeutic efficacy. The unique characteristics of EVs suggest that they potentially circumvent the limitations of traditional cell-based therapies. However, given the novelty of EVs as a therapeutic, recommendations around ideal methods of production, isolation, storage, and delivery have not yet been created by regulatory agencies. In this concise review, we discuss the pertinence and limitations of cell-based therapeutics in perinatal medicine. We also review the preclinical evidence supporting the use of therapeutic EVs for perinatal therapy. Further, we summarize the arising considerations regarding adequate cell source, biodistribution, isolation and storage methods, and regulatory roadblocks for the development of therapeutic EVs.


Asunto(s)
Amnios , Células Epiteliales , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Células Epiteliales/citología , Células Epiteliales/metabolismo , Amnios/citología , Lesiones Encefálicas/terapia , Lesión Pulmonar/terapia , Animales , Femenino
2.
Gene Ther ; 31(3-4): 65-73, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37880336

RESUMEN

Cell based therapies are being assessed for their therapeutic potential across a variety of diseases. Gestational tissues are attractive sources for cell therapy. The large number of births worldwide ensures sufficient access to gestational tissues, however, limited information has been reported around the impact of birth trends, delivery methods and pregnancy conditions on perinatal stem cell banking. This review describes the current state of banking of gestational tissues and their derived perinatal stem cells, discusses why the changes in birth trends and delivery methods could affect gestational tissue banking practices, and further explores how common pregnancy complications can potentially influence perinatal stem cell banking.


Asunto(s)
Complicaciones del Embarazo , Embarazo , Femenino , Humanos , Complicaciones del Embarazo/etiología , Células Madre
3.
Front Physiol ; 14: 1101647, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760535

RESUMEN

Background: Neurovascular coupling (NVC) leads to an increase in local cerebral blood flow and oxygenation in response to increased neural activity and metabolic demand. Impaired or immature NVC reported in the preterm brain, potentially reduces cerebral oxygenation following increased neural activity, predisposing to cerebral tissue hypoxia. Endogenous nitric oxide (NO) is a potent vasodilator and a major mediator of NVC and the cerebral haemodynamic response. NO modulators, such as inhaled nitric oxide (iNO) and sildenafil, induce vasodilation and are used clinically to treat pulmonary hypertension in preterm neonates. However, their impact on NVC in the preterm brain are unknown. We aimed to characterise the cerebral functional haemodynamic response in the preterm brain exposed to NO modulators. We hypothesized that iNO and sildenafil in clinical dosages would increase the baseline cerebral perfusion and the cerebral haemodynamic response to neural activation. Methods: Preterm lambs (126-7 days' gestation) were delivered and mechanically ventilated. The cerebral functional haemodynamic response was measured using near infrared spectroscopy as changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb), following left median nerve stimulations of 1.8, 4.8, and 7.8 s durations in control preterm lambs (n = 11), and following 4.8 and 7.8 s stimulations in preterm lambs receiving either sildenafil citrate (n = 6, 1.33 mcg/kg/hr) or iNO (n = 8, 20 ppm). Results: Following 1.8, 4.8, and 7.8 s stimulations, ∆oxyHb in the contralateral cortex increased (positive functional response) in 7/11 (64%), 7/11 (64%), and 4/11 (36%) control lambs respectively (p < 0.05). Remaining lambs showed decreased ΔoxyHb (negative functional response). Following 4.8 s stimulations, more lambs receiving sildenafil or iNO (83% and 100% respectively) showed positive functional response compared to the controls (p < 0.05). No significant difference between the three groups was observed at 7.8 s stimulations. Conclusion: In the preterm brain, prolonged somatosensory stimulations increased the incidence of negative functional responses with decreased cerebral oxygenation, suggesting that cerebral oxygen delivery may not match the oxygen demand. Sildenafil and iNO increased the incidence of positive functional responses, potentially enhancing NVC, and cerebral oxygenation.

4.
J Appl Physiol (1985) ; 129(5): 1075-1084, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32909920

RESUMEN

Positive end-expiratory pressure (PEEP) improves oxygenation in mechanically ventilated preterm neonates by preventing lung collapse. However, high PEEP may alter cerebral blood flow secondarily to the increased intrathoracic pressure, predisposing to brain injury. The precise effects of high PEEP on cerebral hemodynamics in the preterm brain are unknown. We aimed to assess the effect of PEEP on microvessels in the preterm brain by using synchrotron radiation (SR) microangiography, which enables in vivo real-time high-resolution imaging of the cerebral vasculature. Preterm lambs (0.8 gestation, n = 4) were delivered via caesarean section, anesthetized, and ventilated. SR microangiography of the right cerebral hemisphere was performed with iodine contrast administered into the right carotid artery during PEEP ventilation of 5 and 10 cmH2O. Carotid blood flow was measured using an ultrasonic flow probe placed around the left carotid artery. An increase of PEEP from 5 to 10 cmH2O increased the diameter of small cerebral vessels (<150 µm) but decreased the diameter of larger cerebral vessels (>500 µm) in all four lambs. Additionally, the higher PEEP increased the cerebral contrast transit time in three of the four lambs. Carotid blood flow increased in two lambs, which also had increased carbon dioxide levels during PEEP 10. Our results suggest that PEEP of 10 cmH2O alters the preterm cerebral hemodynamics, with prolonged cerebral blood flow transit and engorgement of small cerebral microvessels likely due to the increased intrathoracic pressure. These microvascular changes are generally not reflected in global assessment of cerebral blood flow or oxygenation.NEW & NOTEWORTHY An increase of positive end-expiratory pressure (PEEP) from 5 to 10 cmH2O increased the diameter of small cerebral vessels (<150 µm) but decreased the diameter of larger cerebral vessels (>500 µm). This suggests increased intrathoracic pressure due to high PEEP can drive microvessel engorgement in the preterm brain, which may play a role in cerebrovascular injury.


Asunto(s)
Encéfalo , Circulación Cerebrovascular , Respiración con Presión Positiva , Sincrotrones , Animales , Encéfalo/efectos de la radiación , Femenino , Pulmón , Perfusión , Embarazo , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA