Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 83(8): 083504, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22938291

RESUMEN

We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

2.
Phys Rev Lett ; 99(17): 175003, 2007 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17995341

RESUMEN

Field-reversed configurations (FRCs) driven by rotating magnetic fields (RMFs) with spatial high harmonics have been studied in the metal flux conserver of the FRC injection experiment. The experimental results show that the fundamental RMF component is observed to penetrate the plasma column, while the high harmonics are screened at the plasma edge due to their slower or reversed rotation. This selective penetration of the RMF provides good compatibility of radial and azimuthal force balances; significant radial inward force mostly from the high-harmonic components, and sufficient azimuthal torque solely provided by the fundamental component.

3.
Phys Rev Lett ; 97(13): 135002, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-17026040

RESUMEN

The coupling between the global reconnection geometry and the local microphysics, caused by the Hall effect, is studied during counterhelicity plasma merging in the magnetic reconnection experiment. The structure of the reconnection layer is significantly modified by reversing the sign of the toroidal fields, which affects the manifestation of the Hall effect in the collisionless regime. The local two-fluids physics changes the global boundary conditions, and this combination effect consequently provides different reconnection rates, magnetic field structure, and plasma flow patterns for two different counterhelicity merging cases in the collisionless regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...