Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cell Metab ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38889724

RESUMEN

Deficiency of the epigenome modulator histone deacetylase 3 (HDAC3) in brown adipose tissue (BAT) impairs the ability of mice to survive in near-freezing temperatures. Here, we report that short-term exposure to mild cold temperature (STEMCT: 15°C for 24 h) averted lethal hypothermia of mice lacking HDAC3 in BAT (HDAC3 BAT KO) exposed to 4°C. STEMCT restored the induction of the thermogenic coactivator PGC-1α along with UCP1 at 22°C, which is greatly impaired in HDAC3-deficient BAT, and deletion of either UCP1 or PGC-1α prevented the protective effect of STEMCT. Remarkably, this protection lasted for up to 7 days. Transcriptional activator C/EBPß was induced by short-term cold exposure in mouse and human BAT and, uniquely, remained high for 7 days following STEMCT. Adeno-associated virus-mediated knockdown of BAT C/EBPß in HDAC3 BAT KO mice erased the persistent memory of STEMCT, revealing the existence of a C/EBPß-dependent and HDAC3-independent cold-adaptive epigenomic memory.

2.
Int Immunol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895753

RESUMEN

The generation and maintenance of memory T cells are regulated by various factors, including cytokines. Previous studies have shown that IL-27 is produced during the early acute phase of Plasmodium chabaudi chabaudi AS (Pcc) infection and inhibits the development of Th1-type memory CD4+ T cells. However, whether IL-27 acts directly on its receptor on Plasmodium-specific CD4+ T cells or indirectly via its receptor on other immune cells remains unclear. We aimed to determine the role of IL-27 receptor signaling in different immune cell types in regulating the generation and phenotype of memory CD4+ T cells during Plasmodium infection. We utilized Plasmodium-specific TCR transgenic mice, PbT-II, and Il27rα-/- mice to assess the direct and indirect effects of IL-27 signaling on memory CD4+ T-cell generation. Mice were transferred with PbT-II or Il27rα-/- PbT-II cells and infected with Pcc. Conditional knockout mice lacking the IL-27 receptor in T cells or dendritic cells were employed to discern the specific immune cell types involved in IL-27 receptor signaling. High levels of memory in PbT-II cells with Th1-shift occurred only when both PbT-II and host cells lacked the IL-27 receptor, suggesting the predominant inhibitory role of IL-27 signaling in both cell types. Furthermore, IL-27 receptor signaling in T cells limited the number of memory CD4+ T cells, while signaling in both T and dendritic cells contributed to the Th1 dominance of memory CD4+ T cells. These findings underscore the complex cytokine signaling network regulating memory CD4+ T cells during Plasmodium infection.

3.
Nat Metab ; 6(5): 825-836, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38622413

RESUMEN

Nuclear receptor corepressors (NCoRs) function in multiprotein complexes containing histone deacetylase 3 (HDAC3) to alter transcriptional output primarily through repressive chromatin remodelling at target loci1-5. In the liver, loss of HDAC3 causes a marked hepatosteatosis largely because of de-repression of genes involved in lipid metabolism6,7; however, the individual roles and contribution of other complex members to hepatic and systemic metabolic regulation are unclear. Here we show that adult loss of both NCoR1 and NCoR2 (double knockout (KO)) in hepatocytes phenocopied the hepatomegalic fatty liver phenotype of HDAC3 KO. In addition, double KO livers exhibited a dramatic reduction in glycogen storage and gluconeogenic gene expression that was not observed with hepatic KO of individual NCoRs or HDAC3, resulting in profound fasting hypoglycaemia. This surprising HDAC3-independent activation function of NCoR1 and NCoR2 is due to an unexpected loss of chromatin accessibility on deletion of NCoRs that prevented glucocorticoid receptor binding and stimulatory effect on gluconeogenic genes. These studies reveal an unanticipated, non-canonical activation function of NCoRs that is required for metabolic health.


Asunto(s)
Gluconeogénesis , Histona Desacetilasas , Hígado , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear , Co-Represor 2 de Receptor Nuclear , Receptores de Glucocorticoides , Gluconeogénesis/genética , Animales , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Ratones , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Hígado/metabolismo , Hepatocitos/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Coactivador 2 del Receptor Nuclear/genética
4.
iScience ; 27(4): 109398, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38544573

RESUMEN

Mitochondria play a vital role in non-shivering thermogenesis in both brown and subcutaneous white adipose tissues (BAT and scWAT, respectively). However, specific regulatory mechanisms driving mitochondrial function in these tissues have been unclear. Here we demonstrate that prolonged activation of ß-adrenergic signaling induces epigenetic modifications in scWAT, specifically targeting the enhancers for the mitochondria master regulator genes Pgc1a/b. This is mediated at least partially through JMJD1A, a histone demethylase that in response to ß-adrenergic signals, facilitates H3K9 demethylation of the Pgc1a/b enhancers, promoting mitochondrial biogenesis and the formation of beige adipocytes. Disruption of demethylation activity of JMJD1A in mice impairs activation of Pgc1a/b driven mitochondrial biogenesis and limits scWAT beiging, contributing to reduced energy expenditure, obesity, insulin resistance, and metabolic disorders. Notably, JMJD1A demethylase activity is not required for Pgc1a/b dependent thermogenic capacity of BAT especially during acute cold stress, emphasizing the importance of scWAT thermogenesis in overall energy metabolism.

5.
EMBO Mol Med ; 15(12): e17713, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37855243

RESUMEN

Malaria infection elicits both protective and pathogenic immune responses, and IL-27 is a critical cytokine that regulate effector responses during infection. Here, we identified a critical window of CD4+ T cell responses that is targeted by IL-27. Neutralization of IL-27 during acute infection with Plasmodium chabaudi expanded specific CD4+ T cells, which were maintained at high levels thereafter. In the chronic phase, Plasmodium-specific CD4+ T cells in IL-27-neutralized mice consisted mainly of CD127+ KLRG1- and CD127- KLRG1+ subpopulations that displayed distinct cytokine production, proliferative capacity, and are maintained in a manner independent of active infection. Single-cell RNA-seq analysis revealed that these CD4+ T cell subsets formed independent clusters that express unique Th1-type genes. These IL-27-neutralized mice exhibited enhanced cellular and humoral immune responses and protection. These findings demonstrate that IL-27, which is produced during the acute phase of malaria infection, inhibits the development of unique Th1 memory precursor CD4+ T cells, suggesting potential implications for the development of vaccines and other strategic interventions.


Asunto(s)
Interleucina-27 , Malaria , Plasmodium chabaudi , Ratones , Animales , Linfocitos T , Malaria/patología , Linfocitos T CD4-Positivos , Ratones Endogámicos C57BL
6.
ACS Infect Dis ; 9(7): 1303-1309, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37321567

RESUMEN

Artemisinins have been used as first-line drugs worldwide to treat malaria caused by Plasmodium falciparum; however, its underlying mechanism is still unclear. This study aimed to identify the factors inducing growth inhibition via pyknosis, a state of intraerythrocytic developmental arrest, when exposing the parasite to dihydroartemisinin (DHA). Changes in the expression of genome-wide transcripts were assessed in the parasites treated with antimalarials, revealing the specific downregulation of zinc-associated proteins by DHA. The quantification of zinc levels in DHA-treated parasite indicated abnormal zinc depletion. Notably, the zinc-depleted condition in the parasite produced by a zinc chelator induced the generation of a pyknotic form and the suppression of its proliferation. The evaluation of the antimalarial activity of DHA or a glutathione-synthesis inhibitor in the zinc-depleted state showed that the disruption of zinc and glutathione homeostasis synergistically potentiated the growth inhibition of P. falciparum through pyknosis. These findings could help further understand the antimalarial actions of artemisinins for advancing malaria therapy.


Asunto(s)
Antimaláricos , Artemisininas , Antagonistas del Ácido Fólico , Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Antimaláricos/farmacología , Plasmodium falciparum , Artemisininas/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria/tratamiento farmacológico , Homeostasis , Glutatión
7.
Microbiol Immunol ; 67(5): 239-247, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36829293

RESUMEN

Malaria is one of the deadliest infectious diseases. Licensed vaccine have demonstrated just over 30% efficacy, and therefore, developing new vaccine candidates and understanding immune responses to Plasmodium have become necessary. γδ T cells have been suggested to be associated with immune responses to malaria due to the observation of their expansion in patients with malaria and experimental models of malaria. γδ T cells act as both "innate-like" and "adaptive-like" cells during immune response to malaria. Studies have found that γδ T cells can recognize Plasmodium phosphoantigen, present the antigen, and initiate adaptive immune response during blood-stage Plasmodium infection. Recent reports also suggested the phagocytic and cytotoxic potential of γδ T cells. Furthermore, γδ T cells can provide protection upon immunization with whole parasite. In addition, γδ T cells during the liver-stage infection were able to prevent experimental cerebral malaria. Despite these new findings, questions related to γδ T-cell response during Plasmodium infection remain to be answered. However, investigating these cells in humans remains difficult in many ways; in this regard, rodent models of malarial infection enable us to study these cells in more detail. Insights from experimental malaria models give rise to new cues for development of malarial vaccine and adjunctive therapy for severe malaria. Here, we review our current knowledge of γδ T-cell immune function in human and experimental mouse malarial infection models; especially, we focus on the mechanisms underlying γδ T cells that are associated with protective immunity during malarial infection.


Asunto(s)
Malaria , Linfocitos T , Humanos , Animales , Ratones , Receptores de Antígenos de Linfocitos T gamma-delta , Malaria/prevención & control , Inmunidad
8.
Parasitol Int ; 92: 102646, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35998816

RESUMEN

Malaria is a life-threatening disease caused by infection with Plasmodium parasites. The goal of developing an effective malaria vaccine is yet to be reached despite decades of massive research efforts. CD4+ helper T cells, CD8+ cytotoxic T cells, and γδ T cells are associated with immune responses to both liver-stage and blood-stage Plasmodium infection. The immune responses of T cell-lineages to Plasmodium infection are associated with both protection and immunopathology. Studies with mouse model of malaria contribute to our understanding of host immune response. In this paper, we focus primarily on mouse malaria model with blood-stage Plasmodium berghei infection and review our knowledge of T cell immune responses against Plasmodium infection. Moreover, we also discuss findings of experimental human studies. Uncovering the precise mechanisms of T cell-mediated immunity to Plasmodium infection can be accomplished through further investigations using mouse models of malaria with rodent Plasmodium parasites. Those findings would be invaluable to advance the efforts for development of an effective malaria vaccine.


Asunto(s)
Vacunas contra la Malaria , Malaria , Humanos , Animales , Ratones , Plasmodium berghei , Linfocitos T , Inmunidad Celular , Modelos Animales de Enfermedad
9.
Drug Metab Dispos ; 51(1): 67-80, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273823

RESUMEN

In a previous study on the human mass balance of DS-1971a, a selective NaV1.7 inhibitor, its CYP2C8-dependent metabolite M1 was identified as a human disproportionate metabolite. The present study assessed the usefulness of pharmacokinetic evaluation in chimeric mice grafted with human hepatocytes (PXB-mice) and physiologically based pharmacokinetic (PBPK) simulation of M1. After oral administration of radiolabeled DS-1971a, the most abundant metabolite in the plasma, urine, and feces of PXB-mice was M1, while those of control SCID mice were aldehyde oxidase-related metabolites including M4, suggesting a drastic difference in the metabolism between these mouse strains. From a qualitative perspective, the metabolite profile observed in PXB-mice was remarkably similar to that in humans, but the quantitative evaluation indicated that the area under the plasma concentration-time curve (AUC) ratio of M1 to DS-1971a (M1/P ratio) was approximately only half of that in humans. A PXB-mouse-derived PBPK model was then constructed to achieve a more accurate prediction, giving an M1/P ratio (1.3) closer to that in humans (1.6) than the observed value in PXB-mice (0.69). In addition, simulated maximum plasma concentration and AUC values of M1 (3429 ng/ml and 17,116 ng·h/ml, respectively) were similar to those in humans (3180 ng/ml and 18,400 ng·h/ml, respectively). These results suggest that PBPK modeling incorporating pharmacokinetic parameters obtained with PXB-mice is useful for quantitatively predicting exposure to human disproportionate metabolites. SIGNIFICANCE STATEMENT: The quantitative prediction of human disproportionate metabolites remains challenging. This paper reports on a successful case study on the practical estimation of exposure (C max and AUC) to DS-1971a and its CYP2C8-dependent, human disproportionate metabolite M1, by PBPK simulation utilizing pharmacokinetic parameters obtained from PXB-mice and in vitro kinetics in human liver fractions. This work adds to the growing knowledge regarding metabolite exposure estimation by static and dynamic models.


Asunto(s)
Aldehído Oxidasa , Hígado , Humanos , Ratones , Animales , Aldehído Oxidasa/metabolismo , Citocromo P-450 CYP2C8/metabolismo , Ratones SCID , Hígado/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Biológicos
10.
Biochem Biophys Res Commun ; 637: 58-65, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36375251

RESUMEN

Malaria is an infectious disease caused by Plasmodium parasites and has high mortality rates, especially among children in African and Southeast Asian countries. Patients with hemolytic anemia are suggested to adapt protective measures against malarial infection. Nicotinamide adenine dinucleotide (NAD+) is a crucial cofactor associated with numerous biological processes that maintain homeostasis in all living organisms. In a previous study, we had demonstrated that the deficiency of nicotinamide mononucleotide adenylyltransferase 3 (Nmnat3), an enzyme catalyzing NAD+ synthesis, causes hemolytic anemia accompanied by a drastic decline in the NAD+ levels in the erythrocytes. It is well known that hemolytic anemia is linked to a reduced risk of malarial infections. In the present study, we investigated whether hemolytic anemia caused by Nmnat3 deficiency is beneficial against malarial infections. We found that Nmnat3 deficiency exacerbated malarial infection and subsequently caused death. Moreover, we demonstrated that the NAD+ levels in malaria-infected Nmnat3 red blood cells significantly increased and the glycolytic flow was largely enhanced to support the rapid growth of malarial parasites. Our results revealed that hemolytic anemia induced by the deletion of Nmnat3 was harmful rather than protective against malaria.


Asunto(s)
Anemia Hemolítica , Malaria , Nicotinamida-Nucleótido Adenililtransferasa , Niño , Humanos , Anemia Hemolítica/complicaciones , Anemia Hemolítica/genética , Eritrocitos/metabolismo , Malaria/complicaciones , NAD/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Animales
11.
Proc Natl Acad Sci U S A ; 119(33): e2205276119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939699

RESUMEN

Brown adipose tissue (BAT) is a key thermogenic organ whose expression of uncoupling protein 1 (UCP1) and ability to maintain body temperature in response to acute cold exposure require histone deacetylase 3 (HDAC3). HDAC3 exists in tight association with nuclear receptor corepressors (NCoRs) NCoR1 and NCoR2 (also known as silencing mediator of retinoid and thyroid receptors [SMRT]), but the functions of NCoR1/2 in BAT have not been established. Here we report that as expected, genetic loss of NCoR1/2 in BAT (NCoR1/2 BAT-dKO) leads to loss of HDAC3 activity. In addition, HDAC3 is no longer bound at its physiological genomic sites in the absence of NCoR1/2, leading to a shared deregulation of BAT lipid metabolism between NCoR1/2 BAT-dKO and HDAC3 BAT-KO mice. Despite these commonalities, loss of NCoR1/2 in BAT does not phenocopy the cold sensitivity observed in HDAC3 BAT-KO, nor does loss of either corepressor alone. Instead, BAT lacking NCoR1/2 is inflamed, particularly with respect to the interleukin-17 axis that increases thermogenic capacity by enhancing innervation. Integration of BAT RNA sequencing and chromatin immunoprecipitation sequencing data revealed that NCoR1/2 directly regulate Mmp9, which integrates extracellular matrix remodeling and inflammation. These findings reveal pleiotropic functions of the NCoR/HDAC3 corepressor complex in BAT, such that HDAC3-independent suppression of BAT inflammation counterbalances stimulation of HDAC3 activity in the control of thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Co-Represor 1 de Receptor Nuclear , Co-Represor 2 de Receptor Nuclear , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Histona Desacetilasas/metabolismo , Inflamación/metabolismo , Ratones , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Receptores de Ácido Retinoico/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
12.
Int Immunol ; 34(1): 21-33, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648636

RESUMEN

Plasmodium parasites that infect humans are highly polymorphic, and induce various infections ranging from an asymptomatic state to life-threatening diseases. However, how the differences between the parasites affect host immune responses during blood-stage infection remains largely unknown. We investigated the CD4+ T-cell immune responses in mice infected with P. berghei ANKA (PbA) or P. chabaudi chabaudi AS (Pcc) using PbT-II cells, which recognize a common epitope of these parasites. In the acute phase of infection, CD4+ T-cell responses in PbA-infected mice showed a lower involvement of Th1 cells and a lower proportion of Ly6Clo effector CD4+ T cells than those in Pcc-infected mice. Transcriptome analysis of PbT-II cells indicated that type I interferon (IFN)-regulated genes were expressed at higher levels in both Th1- and Tfh-type PbT-II cells from PbA-infected mice than those from Pcc-infected mice. Moreover, IFN-α levels were considerably higher in PbA-infected mice than in Pcc-infected mice. Inhibition of type I IFN signaling increased PbT-II and partially reversed the Th1 over Tfh bias of the PbT-II cells in both PbA- and Pcc-infected mice. In the memory phase, PbT-II cells in PbA-primed mice maintained higher numbers and exhibited a better recall response to the antigen. However, recall responses were not significantly different between the infection groups after re-challenge with PbA, suggesting the effect of the inflammatory environment by the infection. These observations suggest that the differences in Plasmodium-specific CD4+ T-cell responses between PbA- and Pcc-infected mice were associated with the difference in type I IFN production during the early phase of the infection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Interferón Tipo I/biosíntesis , Malaria/inmunología , Plasmodium berghei/inmunología , Plasmodium chabaudi/inmunología , Animales , Células Cultivadas , Ratones , Ratones Transgénicos
13.
Drug Metab Dispos ; 50(3): 235-242, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34930785

RESUMEN

Predicting human disproportionate metabolites is difficult, especially when drugs undergo species-specific metabolism mediated by cytochrome P450s (P450s) and/or non-P450 enzymes. This study assessed human metabolites of DS-1971a, a potent Nav1.7-selective blocker, by performing human mass balance studies and characterizing DS-1971a metabolites, in accordance with the Metabolites in Safety Testing guidance. In addition, we investigated the mechanism by which the major human disproportionate metabolite (M1) was formed. After oral administration of radiolabeled DS-1971a, the major metabolites in human plasma were P450-mediated monoxidized metabolites M1 and M2 with area under the curve ratios of 27% and 10% of total drug-related exposure, respectively; the minor metabolites were dioxidized metabolites produced by aldehyde oxidase and P450s. By comparing exposure levels of M1 and M2 between humans and safety assessment animals, M1 but not M2 was found to be a human disproportionate metabolite, requiring further characterization under the Metabolites in Safety Testing guidance. Incubation studies with human liver microsomes indicated that CYP2C8 was responsible for the formation of M1. Docking simulation indicated that, in the formation of M1 and M2, there would be hydrogen bonding and/or electrostatic interactions between the pyrimidine and sulfonamide moieties of DS-1971a and amino acid residues Ser100, Ile102, Ile106, Thr107, and Asn217 in CYP2C8, and that the cyclohexane ring of DS-1971a would be located near the heme iron of CYP2C8. These results clearly indicate that M1 is the predominant metabolite in humans and a human disproportionate metabolite due to species-specific differences in metabolism. SIGNIFICANCE STATEMENT: This report is the first to show a human disproportionate metabolite generated by CYP2C8-mediated primary metabolism. We clearly demonstrate that DS-1971a, a mixed aldehyde oxidase and cytochrome P450 substrate, was predominantly metabolized by CYP2C8 to form M1, a human disproportionate metabolite. Species differences in the formation of M1 highlight the regio- and stereoselective metabolism by CYP2C8, and the proposed interaction between DS-1971a and CYP2C8 provides new knowledge of CYP2C8-mediated metabolism of cyclohexane-containing substrates.


Asunto(s)
Aldehído Oxidasa , Sulfonamidas , Aldehído Oxidasa/metabolismo , Animales , Citocromo P-450 CYP2C8/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Pirazoles , Pirimidinas/metabolismo , Sulfonamidas/metabolismo
14.
Nat Commun ; 12(1): 7045, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857762

RESUMEN

Enhancer activation is essential for cell-type specific gene expression during cellular differentiation, however, how enhancers transition from a hypoacetylated "primed" state to a hyperacetylated-active state is incompletely understood. Here, we show SET domain-containing 5 (SETD5) forms a complex with NCoR-HDAC3 co-repressor that prevents histone acetylation of enhancers for two master adipogenic regulatory genes Cebpa and Pparg early during adipogenesis. The loss of SETD5 from the complex is followed by enhancer hyperacetylation. SETD5 protein levels were transiently increased and rapidly degraded prior to enhancer activation providing a mechanism for the loss of SETD5 during the transition. We show that induction of the CDC20 co-activator of the ubiquitin ligase leads to APC/C mediated degradation of SETD5 during the transition and this operates as a molecular switch that facilitates adipogenesis.


Asunto(s)
Adipogénesis/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Histona Desacetilasas/genética , Metiltransferasas/genética , Co-Represor 1 de Receptor Nuclear/genética , PPAR gamma/genética , Células 3T3-L1 , Acetilación , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Células HEK293 , Histona Desacetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Metiltransferasas/metabolismo , Ratones , Ratones Desnudos , Co-Represor 1 de Receptor Nuclear/metabolismo , PPAR gamma/metabolismo , Unión Proteica , Proteolisis , Células Sf9 , Transducción de Señal
15.
Materials (Basel) ; 14(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34947421

RESUMEN

This work was focused on revealing the relation between the microstructure and corrosion dynamics in dilute Mg97.94Zn0.56Y1.5 (at.%) alloys prepared by the consolidation of rapidly solidified (RS) ribbons. The dynamics of the corrosion were followed by common electrochemical methods and the acoustic emission (AE) technique. AE monitoring offers instantaneous feedback on changes in the dynamics and mode of the corrosion. In contrast, the electrochemical measurements were performed on the specimens, which had already been immersed in the solution for a pre-defined time. Thus, some short-term corrosion processes could remain undiscovered. Obtained results were completed by scanning electron microscopy, including analysis of a cross-section of the corrosion layer. It was shown that the internal strain distribution, the grain morphology, and the distribution of the secondary phases play a significant role in the corrosion. The alloys are characterized by a complex microstructure with elongated worked and dynamically recrystallized α-Mg grains with an average grain size of 900 nm. Moreover, the Zn- and Y-rich stacking faults (SFs) were dispersed in the grain interior. In the alloy consolidated at a lower extrusion speed, the homogeneous internal strain distribution led to uniform corrosion with a rate of 2 mm/year and a low hydrogen release. The consolidation at a higher extrusion speed resulted in the formation of uneven distribution of internal strains with remaining high strain levels in non-recrystallized grains, leading to inhomogeneous growth and breakdown of the corrosion layers. Therefore, homogeneity of the internal strain distribution is of key importance for the uniform formation of a protective layer.

16.
Xenobiotica ; 51(9): 1060-1070, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34330191

RESUMEN

Nonclinical metabolite profiling of DS-1971a, a potent selective NaV1.7 inhibitor, was performed to predict human metabolites.After the oral administration of radiolabelled DS-1971a, the predominant metabolite in mouse plasma was M4, a monoxide at the pyrimidine ring, while the major metabolites with the first and second highest exposure in monkey plasma were M2, a monoxide at the cyclohexane ring, and M11, a demethylated pyrazole metabolite.Incubation studies with liver cytosolic and microsomal fractions in the absence or presence of NADPH indicated that the metabolising enzyme responsible for M4 formation was aldehyde oxidase (AO), while cytochrome P450s (P450s) were responsible for M2 and M11 formation. These results suggest that DS-1971a is a substrate for both AO and P450.When DS-1971a was incubated with liver S9 fractions and NADPH, the most abundant metabolites were M4 in mice, and M2 and M11 in monkeys, indicating that the results of in vitro incubation studies could provide information reflecting the in vivo plasma metabolite profiles in mice and monkeys. The results obtained from the incubation with the human liver S9 fraction and NADPH suggested that a major circulating metabolite in humans is M1, a regioisomer of M2.


Asunto(s)
Aldehído Oxidasa , Microsomas Hepáticos , Aldehído Oxidasa/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Tasa de Depuración Metabólica , Ratones , Microsomas Hepáticos/metabolismo , Especificidad de la Especie
17.
Sci Rep ; 11(1): 11508, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075087

RESUMEN

IL-17A and IL-17F are both involved in the pathogenesis of neutrophilic inflammation observed in COPD and severe asthma. To explore this, mice deficient in both Il17a and Il17f and wild type (WT) mice were exposed to cigarette smoke or environmental air for 5 to 28 days and changes in inflammatory cells in bronchoalveolar lavage (BAL) fluid were determined. We also measured the mRNA expression of keratinocyte derived chemokine (Kc), macrophage inflammatory protein-2 (Mip2), granulocyte-macrophage colony stimulating factor (Gmcsf) and matrix metalloproteinase-9 (Mmp9 ) in lung tissue after 8 days, and lung morphometric changes after 24 weeks of exposure to cigarette smoke compared to air-exposed control animals. Macrophage counts in BAL fluid initially peaked at day 8 and again on day 28, while neutrophil counts peaked between day 8 and 12 in WT mice. Mice dual deficient with Il17a and 1l17f showed similar kinetics with macrophages and neutrophils, but cell numbers at day 8 and mRNA expression of Kc, Gmcsf and Mmp9 were significantly reduced. Furthermore, airspaces in WT mice became larger after cigarette smoke exposure for 24 weeks, whereas this was not seen dual Il17a and 1l17f deficient mice. Combined Il17a and Il17f deficiency resulted in significant attenuation of neutrophilic inflammatory response and protection against structural lung changes after long term cigarette smoke exposure compared with WT mice. Dual IL-17A/F signalling plays an important role in pro-inflammatory responses associated with histological changes induced by cigarette smoke exposure.


Asunto(s)
Fumar Cigarrillos , Regulación de la Expresión Génica/inmunología , Interleucina-17/deficiencia , Pulmón/inmunología , Enfermedad Pulmonar Obstructiva Crónica/prevención & control , Enfermedad Aguda , Animales , Enfermedad Crónica , Fumar Cigarrillos/genética , Fumar Cigarrillos/inmunología , Citocinas/genética , Citocinas/inmunología , Femenino , Interleucina-17/inmunología , Macrófagos/inmunología , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/inmunología , Ratones , Ratones Mutantes , Neutrófilos/inmunología , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/inmunología
18.
Nat Commun ; 12(1): 2028, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795686

RESUMEN

Germline mutations in BRAF and other components of the MAPK pathway are associated with the congenital syndromes collectively known as RASopathies. Here, we report the association of Septo-Optic Dysplasia (SOD) including hypopituitarism and Cardio-Facio-Cutaneous (CFC) syndrome in patients harbouring mutations in BRAF. Phosphoproteomic analyses demonstrate that these genetic variants are gain-of-function mutations leading to activation of the MAPK pathway. Activation of the MAPK pathway by conditional expression of the BrafV600E/+ allele, or the knock-in BrafQ241R/+ allele (corresponding to the most frequent human CFC-causing mutation, BRAF p.Q257R), leads to abnormal cell lineage determination and terminal differentiation of hormone-producing cells, causing hypopituitarism. Expression of the BrafV600E/+ allele in embryonic pituitary progenitors leads to an increased expression of cell cycle inhibitors, cell growth arrest and apoptosis, but not tumour formation. Our findings show a critical role of BRAF in hypothalamo-pituitary-axis development both in mouse and human and implicate mutations found in RASopathies as a cause of endocrine deficiencies in humans.


Asunto(s)
Mutación con Ganancia de Función , Hipopituitarismo/genética , Hipotálamo/metabolismo , Hipófisis/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Niño , Preescolar , Corticotrofos/citología , Corticotrofos/metabolismo , Displasia Ectodérmica/genética , Facies , Insuficiencia de Crecimiento/genética , Células HEK293 , Cardiopatías Congénitas/genética , Humanos , Lactante , Sistema de Señalización de MAP Quinasas/genética , Melanotrofos/citología , Melanotrofos/metabolismo , Ratones Noqueados , Ratones Transgénicos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Secuenciación del Exoma/métodos
19.
Int Immunol ; 33(8): 409-422, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-33914894

RESUMEN

Upon activation, specific CD4+ T cells up-regulate the expression of CD11a and CD49d, surrogate markers of pathogen-specific CD4+ T cells. However, using T-cell receptor transgenic mice specific for a Plasmodium antigen, termed PbT-II, we found that activated CD4+ T cells develop not only to CD11ahiCD49dhi cells, but also to CD11ahiCD49dlo cells during acute Plasmodium infection. CD49dhi PbT-II cells, localized in the red pulp of spleens, expressed transcription factor T-bet and produced IFN-γ, indicating that they were type 1 helper T (Th1)-type cells. In contrast, CD49dlo PbT-II cells resided in the white pulp/marginal zones and were a heterogeneous population, with approximately half of them expressing CXCR5 and a third expressing Bcl-6, a master regulator of follicular helper T (Tfh) cells. In adoptive transfer experiments, both CD49dhi and CD49dlo PbT-II cells differentiated into CD49dhi Th1-type cells after stimulation with antigen-pulsed dendritic cells, while CD49dhi and CD49dlo phenotypes were generally maintained in mice infected with Plasmodium chabaudi. These results suggest that CD49d is expressed on Th1-type Plasmodium-specific CD4+ T cells, which are localized in the red pulp of the spleen, and can be used as a marker of antigen-specific Th1 CD4+ T cells, rather than that of all pathogen-specific CD4+ T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Integrina alfa4/inmunología , Malaria/inmunología , Plasmodium chabaudi/inmunología , Células T Auxiliares Foliculares/inmunología , Células TH1/inmunología , Traslado Adoptivo/métodos , Animales , Células Cultivadas , Células Dendríticas/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-bcl-6/inmunología , Bazo/inmunología , Linfocitos T Colaboradores-Inductores/inmunología
20.
Parasite Immunol ; 43(2): e12763, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32497249

RESUMEN

Human malarial infection occurs after an infectious Anopheles mosquito bites. Following the initial liver-stage infection, parasites transform into merozoites, infecting red blood cells (RBCs). Repeated RBC infection then occurs during the blood-stage infection, while patients experience various malarial symptoms. Protective immune responses are elicited by this systemic infection, but excessive responses are sometimes harmful for hosts. As parasites infect only RBCs and their immediate precursors during this stage, direct parasite-host interactions occur primarily in the environment surrounded by endothelial lining of blood vessels. The spleen is the major organ where the immune system encounters infected RBCs, causing immunological responses. Its tissue structure is markedly altered during malarial infection in mice and humans. Plasmodium falciparum parasites inside RBCs express proteins, such as PfEMP-1 and RIFIN, transported to the RBC surfaces in order to evade immunological attack by sequestering themselves in the peripheral vasculature avoiding spleen or by direct immune cell inhibition through inhibitory receptors. Host cell production of regulatory cytokines IL-10 and IL-27 limits excessive immune responses, avoiding tissue damage. The regulation of the protective and inhibitory immune responses through host-parasite interactions allows chronic Plasmodium infection. In this review, we discuss underlying interaction mechanisms relevant for developing effective strategies against malaria.


Asunto(s)
Citocinas/inmunología , Interacciones Huésped-Parásitos , Malaria/inmunología , Plasmodium falciparum/fisiología , Bazo/inmunología , Animales , Anopheles/parasitología , Eritrocitos/parasitología , Humanos , Proteínas de la Membrana/fisiología , Ratones , Proteínas Protozoarias/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...